计算机研究与发展 ›› 2015, Vol. 52 ›› Issue (6): 1452-1462.doi: 10.7544/issn1000-1239.2015.20140403
• 软件技术 • 上一篇
王有为1,王伟平2,孟丹2
Wang Youwei1, Wang Weiping2, Meng Dan2
摘要: Map/Reduce是海量离线数据分析中广泛应用的并行编程模型.Hive数据仓库基于Map/Reduce实现了查询处理引擎,然而Map/Reduce框架在处理偏斜数据时会出现工作负载分布不均的问题.均衡计算模型(computation balanced model, CBM),其核心思想是通过数据分布特征指导查询计划优化.相应研究贡献包括2部分,首先针对应用极广的GroupBy查询和Join查询建立了运行估价模型,确定了不同场景下查询计划的优化选择分支;其次基于Hive ETL机制设计了一种统计信息收集方法,解决了统计海量数据分布特征的问题.实验数据表明,通过CBM优化的 GroupBy查询耗时节省了8%~45%,Join查询耗时节省了12%~46%;集群CPU负载均衡指标优化了60%~80%,I/O负载均衡指标优化了60%~90%.实验结果证实了基于CBM模型优化的查询计划生成器能显著均衡化Hive查询运行时的集群负载,并优化了查询处理效率.
中图分类号: