计算机研究与发展 ›› 2016, Vol. 53 ›› Issue (8): 1664-1672.doi: 10.7544/issn1000-1239.2016.20160175
所属专题: 2016数据挖掘前沿技术专题
郭弘毅,刘功申,苏波,孟魁
Guo Hongyi, Liu Gongshen, Su Bo,Meng Kui
摘要: 传统的协同过滤推荐算法受限于数据稀疏性问题,导致推荐结果较差.用户的社交关系信息能够体现用户之间的相互影响,将其用于推荐算法能够提高推荐结果的准确度,目前的社交化推荐算法大多只考虑了用户的直接社交关系,没有利用到潜在的用户兴趣偏好信息以及群体聚类信息.针对上述情况,提出一种融合社区结构和兴趣聚类的协同过滤推荐算法.首先通过重叠社区发现算法挖掘用户社交网络中存在的社区结构,同时利用项目所属类别信息,设计模糊聚类算法挖掘用户兴趣偏好层面的聚类信息.然后将2种聚类信息融合到矩阵分解模型的优化分解过程中.在Yelp数据集上进行了新算法与其他算法的对比实验,结果表明,该算法能够有效提高推荐结果的准确度.
中图分类号: