计算机研究与发展 ›› 2017, Vol. 54 ›› Issue (1): 1-19.doi: 10.7544/issn1000-1239.2017.20151076
• 综述 • 下一篇
张海仓1,2,高玉娟3,邓明华3,4,5,郑伟谋6,卜东波1
Zhang Haicang1,2, Gao Yujuan3, Deng Minghua3,4,5, Zheng Weimou6, Bu Dongbo1
摘要: 蛋白质是由多个氨基酸残基顺序连接而成的长链.在天然状态下,蛋白质并不是无规则的自由状态,而是自发形成特定的空间结构,以执行其特定的生物学功能.驱动蛋白质形成特定空间结构的主要因素是残基间的非共价相互作用,包括疏水作用、静电相互作用、范德华力等.因此,对残基之间远程相互作用的准确预测将有助于对蛋白质空间结构的预测,进而有助于对蛋白质生物学功能的了解.在蛋白质进化过程,有相互作用残基对之间存在一种“共进化”模式,即当一个残基发生变异时,与其有相互作用的残基也要发生相应的变异,以维持相互作用,进而维持整体空间结构以及生物学功能.基于上述生物学观察,研究者开发了多个统计模型和算法以预测残基对之间的相互作用:1)概述残基之间远程相互作用的两大类基本预测算法,包括无监督学习方法和监督学习方法;2)使用蛋白质结构预测CASP比赛结果来客观比较上述各类算法的性能,分析各个算法的特点和优势;3)从生物学观察和统计模型2个角度分析总结了未来的发展趋势.
中图分类号: