计算机研究与发展 ›› 2017, Vol. 54 ›› Issue (8): 1795-1803.doi: 10.7544/issn1000-1239.2017.20170172
所属专题: 2017人工智能前沿进展专题
杨妮亚1,彭涛1,2,刘露1
Yang Niya1, Peng Tao1,2, Liu Lu1
摘要: 链路预测是数据挖掘研究的主要问题之一.由于网络的复杂性、数据的多样性,根据网络结构及已有信息对异质网络中的不同类型的数据进行链路预测的问题也变得更加复杂.针对双类型异质信息网络,提出了一种基于聚类和决策树的链路预测方法CDTLinks.通过将网络中2种类型对象互为特征的方法得到对象的特征表示,并分别进行聚类.对于双类型异质网络提出了3种启发式规则来构建决策树,根据信息增益来选择树中不同分支.最后,根据聚簇分布结果以及决策树模型来判断任意2个不同类型节点之间是否存在链接.另外,定义了潜在链接节点并引入层数的概念,在降低算法运行时间的同时提高了准确率.在DBLP和AMiner数据集上验证了提出的CDTlinks方法,结果表明:在双类型异质网络中,CDTlinks模型能够有效地进行链路预测.
中图分类号: