A Benchmark for Iris Segmentation
-
摘要: 虹膜识别是生物特征识别中最稳定和最可靠的身份识别方法之一.在虹膜识别的整个流程中,虹膜分割处于预处理阶段,因此虹膜分割结果的好坏将直接影响虹膜识别的精度.自从1993年Daugman第1次提出高性能的虹膜识别系统以来,各种各样的虹膜分割算法陆续提出,尤其是近年来基于深度学习的虹膜分割算法极大地提升了虹膜分割的精度.然而,由于缺乏统一的数据库和评价指标,各种算法的性能比较杂乱而不公平,因此提出了一个公开的虹膜分割评价基准.首先,介绍了虹膜分割的定义和面临的挑战;其次全面梳理了3个有代表性的公开虹膜分割数据库,总结了其特点和挑战性;紧接着定义了虹膜分割的评价指标;然后对传统的和基于深度学习的虹膜分割算法进行了总结,并通过详细的实验对各类算法进行了比较和分析.实验结果表明:当前基于深度学习的虹膜分割算法在准确性上超越了传统的方法.最后,对基于深度学习的虹膜分割算法存在的问题进行了思考和讨论.Abstract: Iris recognition has been considered as one of the most stable and reliable biometric identification technologies. In the whole process of iris recognition, iris segmentation is in the preprocessing stage, so the quality of iris segmentation can directly affect the accuracy of iris recognition. Since Daugman first proposed a high-performance iris recognition system in 1993, a variety of iris segmentation algorithms have been proposed. Especially in recent years, deep learning based iris segmentation algorithms have greatly improved the accuracy of iris segmentation. However, due to the lack of unified databases and evaluation protocols, the comparisons of different iris segmentation algorithms are messy and absence of fairness, hence an open iris segmentation evaluation benchmark is proposed. First, the definition and challenges of iris segmentation are briefly introduced. Second, a comprehensive summary of three representative, open iris segmentation databases including the characteristics and challenges is given. Next, evaluation protocols of iris segmentation are defined. Then the traditional iris segmentation algorithms and deep learning based iris segmentation algorithms are elaborated on and compared by extensive experiments. The experimental results show that deep learning based iris segmentation methods outperform the traditional approaches in terms of accuracy. Finally, we make in-depth discussions about open questions of deep learning based iris segmentation algorithms.
-
-
期刊类型引用(8)
1. 孙佳倩,朱金荣,张小宝,张云恺,龚卫娟. 基于集成学习的虹膜分割算法. 电子科技. 2025(03): 88-94 . 百度学术
2. 刘卓,刘晓敏,刘金明. 基于投影约束和随机采样Hough变换的虹膜分割方法. 佳木斯大学学报(自然科学版). 2024(03): 21-26 . 百度学术
3. 姜雨彤,邢鑫,张波. 虹膜肠环图像分类方法研究. 电脑知识与技术. 2023(26): 4-6 . 百度学术
4. 尤轩昂,赵鹏,慕晓冬,白坤,练赛. 融合注意力机制与密集多尺度特征的异质噪声虹膜分割方法. 激光与光电子学进展. 2022(04): 109-120 . 百度学术
5. 齐志坤,姜囡,徐浩森. 虹膜识别平台在侦查中身份认定的应用研究. 河北公安警察职业学院学报. 2022(01): 22-28 . 百度学术
6. 陈小祥. 基于可控方向直方图算法的掌纹图像特征提取技术. 贵阳学院学报(自然科学版). 2022(01): 10-13+34 . 百度学术
7. 顾正杰,王财勇,田启川,张琪. 结合Transformer与对称型编解码器的噪声虹膜图像分割方法. 计算机辅助设计与图形学学报. 2022(12): 1887-1898 . 百度学术
8. 孙哲南,赫然,王亮,阚美娜,冯建江,郑方,郑伟诗,左旺孟,康文雄,邓伟洪,张杰,韩琥,山世光,王云龙,茹一伟,朱宇豪,刘云帆,何勇. 生物特征识别学科发展报告. 中国图象图形学报. 2021(06): 1254-1329 . 百度学术
其他类型引用(10)
计量
- 文章访问数: 1372
- HTML全文浏览量: 4
- PDF下载量: 408
- 被引次数: 18