高级检索
    骆祖莹, 潘月斗. CMOS电路晶体管级功耗优化方法[J]. 计算机研究与发展, 2008, 45(4): 734-740.
    引用本文: 骆祖莹, 潘月斗. CMOS电路晶体管级功耗优化方法[J]. 计算机研究与发展, 2008, 45(4): 734-740.
    Luo Zuying, Pan Yuedou. Transistor-Level Methodology on Power Optimization for CMOS Circuits[J]. Journal of Computer Research and Development, 2008, 45(4): 734-740.
    Citation: Luo Zuying, Pan Yuedou. Transistor-Level Methodology on Power Optimization for CMOS Circuits[J]. Journal of Computer Research and Development, 2008, 45(4): 734-740.

    CMOS电路晶体管级功耗优化方法

    Transistor-Level Methodology on Power Optimization for CMOS Circuits

    • 摘要: 随着集成电路工艺进入纳米时代,在集成电路设计约束重要性方面,功耗已成为与性能等量齐观的设计约束.由于缺少有效的晶体管级时延模拟器,所以现有的低功耗设计技术均为逻辑门级功耗优化方法.受惠于更低的优化颗粒度,晶体管级优化方法具有比逻辑门级方法更强的静态功耗优化能力,因此针对高静态功耗的纳米工艺芯片,开展晶体管级优化方法的研究具有非常重要的意义.基于晶体管级VLSI模拟器,提出了一种新的晶体管级优化方法用于进一步降低静态功耗,它由两个算法步骤构成:先用聚团策略(clustering)在逻辑门空间来提高优化算法的效率,再用粒度较小的晶体管空间优化算法来提高功耗的优化效果.实验证明所提方法具有以下优点:1) 该方法适用范围较广,可以分析和优化各种电路.这些电路中,每个晶体管都可以有不同的阈值电压V\-\T0\、沟道宽度W和沟道长度L. 2) 该方法的功耗优化效果较好.在晶体管级W+V\-\T0\+L的功耗优化实验中,该方法在不降低动态功耗优化效果的前提(动态功耗平均仅增加0.02%)下,在合理的运行时间(优化C7552仅用856.4s)内,在晶体管级对逻辑门级优化结果进行进一步优化,使静态功耗得到进一步降低,平均降低22.85%,最大降低43%.

       

      Abstract: With IC technology scaling into nanometer regime, power consumption has become an equal important design constraint as performance. Owing to the shortage of efficient transistor-level delay simulator, previous low-power techniques have to optimize circuits on the gate level. Thanks to the fine granularity, transistor-level low-power design methods can reduce more static power than gate-level counterparts. Thus it is far more important to develop the transistor-level low-power design methodology for nanometer chips marked with high static power. Based on the transistor-level simulator developed, an efficient transistor-level optimization methodology consisting of two-step algorithms is proposed to reduce more static power. The former gate-space algorithm uses the clustering strategy to cut down algorithm complexity. The latter transistor-space algorithm employs fine granularity to pursue reducing more power consumption. Experiments show the following advantages: 1. the proposed methodology is so general that it can analyze and optimize heterogeneous circuit in which each transistor may have its own different V\-\T0\, channel width W, and channel length L, and 2. In the transistor-level W+V\-\T0\+L-sized optimization, the engine takes feasible running time (856.4s for C7552) to cut down 22.85%(average) and 43%(maximum) static power caused by gate-level optimum solution nearly without penalty of active power (average active power increases only 0.02%).

       

    /

    返回文章
    返回