计算机研究与发展 ›› 2020, Vol. 57 ›› Issue (7): 1460-1471.doi: 10.7544/issn1000-1239.2020.20190643
曾维新1,赵翔1,2,唐九阳1,2,谭真1,王炜3
Zeng Weixin1, Zhao Xiang1,2, Tang Jiuyang1,2, Tan Zhen1, Wang Wei3
摘要: 现有的知识图谱无法避免地存在不完整这一问题.缓解此问题的可行方法是引入外部知识图谱中的知识.在此过程中,实体对齐是最关键的步骤.当前最先进的实体对齐解决方案主要依靠知识图谱的结构信息来判断实体的等价性,但在真实世界知识图谱上,大部分实体只具有较低的节点度数以及微少的结构信息.此外,标注数据的缺乏也大大限制了实体对齐模型的效果.为解决上述问题,提出将不受节点度数影响的实体名信息与结构信息相结合,从更全面的角度实现实体对齐.在此基本框架上,利用基于课程学习的迭代训练方法从易至难地选择高置信度结果加入到训练数据中,扩增标注数据的规模.最后使用词移距离模型进一步改进实体名信息的利用方式,并对前序对齐结果重排序,提升实体对齐准确率.在跨语言以及单语言实体对齐任务上的实验结果表明,提出的实体对齐方法性能远好于当前最好的方法.
中图分类号: