• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wang Huiyong, Tang Shijie, Ding Yong, Wang Yujue, Li Jiahui. Survey on Biometrics Template Protection[J]. Journal of Computer Research and Development, 2020, 57(5): 1003-1021. DOI: 10.7544/issn1000-1239.2020.20190371
Citation: Wang Huiyong, Tang Shijie, Ding Yong, Wang Yujue, Li Jiahui. Survey on Biometrics Template Protection[J]. Journal of Computer Research and Development, 2020, 57(5): 1003-1021. DOI: 10.7544/issn1000-1239.2020.20190371

Survey on Biometrics Template Protection

Funds: This work was supported by the National Natural Science Foundation of China (61772150, 61862012, 61802083, 61962012), the Natural Science Foundation of Guangxi Autonomous Region of China (2018GXNSFDA281054, 2018GXNSFAA281232), the Guangxi Key Research and Development Program (AB17195025), and the Open Project of Guangxi Key Laboratory of Cryptography and Information Security (GCIS201622, GCIS201702).
More Information
  • Published Date: April 30, 2020
  • Biometric authentication (BA) has become an important means of identity authentication. However, many BA systems deployed at present do not take enough consideration in protecting the security and privacy of users biometric data, which has become a main obstacle to the popularization and application of the BA technology. BA systems may face various attacks from software or hardware implementations, among which, template attack is the main consideration. Many technical literatures have been devoted to dealing with this type of attacks. However, existing review literatures suffer from incomplete descriptions or conflicting discussions. In order to systematically summarize the attacking and protection technologies against biometric templates, some related concepts of the BA system is introduced at first, as well as the architecture of a BA system and the connotation of BA security and privacy. Then, template protection technologies for a BA system are classified into two main categories for description: the transformation-based methods and the crypto-based methods, which solves some conflictions in existing literatures. Afterwards, some classical methods and emerging technologies in each category are expounded and analyzed, as well as some subsequent evaluations and improvements. Finally, several major difficulties and the corresponding possible solutions for building a secure BA system are pointed out.
  • Cited by

    Periodical cited type(20)

    1. 肖鸿洲 ,李长云,王志兵 ,甘英华 ,任国鑫 . 一种稀疏体压特征人员识别方法. 现代电子技术. 2025(03): 111-118 .
    2. 王莹. 未经授权的人脸识别支付法律责任解释论. 运城学院学报. 2024(02): 70-74+89 .
    3. 洪延青. 人脸识别技术应用的分层治理理论与制度进路. 法律科学(西北政法大学学报). 2024(01): 89-99 .
    4. 王勇,熊毅,杨天宇,沈益冉. 一种面向耳戴式设备的用户安全连续认证方法. 计算机研究与发展. 2024(11): 2821-2834 . 本站查看
    5. 杨光锴. 基于扩散模型的指纹图像生成方法. 河北省科学院学报. 2023(01): 13-18+66 .
    6. 徐胜超,熊茂华. 基于子模式的人脸局部遮挡智能识别方法. 信息技术. 2023(03): 35-39 .
    7. 周宇,向剑文,郑倩荣,赵冬冬. 保护用户数量信息的安全虹膜识别方案. 信息安全学报. 2023(03): 49-64 .
    8. 张星星,钟陈,王文峰,苏立伟. 生物特征识别标准概述. 信息技术与标准化. 2023(11): 64-68 .
    9. 张雪锋,常振会,张俊杰,王超飞. 指纹和虹膜特征融合的可撤销模板保护方法. 西安邮电大学学报. 2023(04): 51-60 .
    10. 钟陈,苏立伟,王文峰. 生物特征识别呈现攻击检测标准化研究. 信息技术与标准化. 2022(Z1): 50-53 .
    11. 张宗华,王晟贤,高楠,孟召宗. 基于曲面类型与深度学习融合的三维掌纹识别技术. 电子与信息学报. 2022(04): 1469-1475 .
    12. 胡先智,陈浩,梁艳. 多模态生物特征信息安全防护体系研究. 计算机技术与发展. 2022(04): 86-91 .
    13. 张波,贺楚博. 基于可撤销人脸的模糊保险箱算法研究与实现. 计算机技术与发展. 2022(06): 126-130 .
    14. 帕孜来提·努尔买提,古丽娜孜·艾力木江,乎西旦·居马洪,朱双玲. 一种基于深度学习方法的面部微变识别的研究. 伊犁师范大学学报(自然科学版). 2022(02): 41-46+52 .
    15. 杨丽红,尚泽昊. 基于区块链和模糊提取的多特征融合身份认证模型. 数字技术与应用. 2022(08): 218-220 .
    16. 董芸嘉,张雪锋,姜文. 基于指纹和手指静脉特征融合的模板保护方法. 传感器与微系统. 2022(11): 9-13 .
    17. 张波,佟玉强. 基于双随机相位编码的多特征人脸模板保护方法. 激光与光电子学进展. 2022(18): 215-222 .
    18. 王晟贤,张宗华,高楠,孟召宗. 融合曲面类型与迁移学习的三维掌纹识别方法. 传感器与微系统. 2022(12): 118-121 .
    19. 丁勇,李佳慧,唐士杰,王会勇. 基于随机映射技术的声纹识别模板保护. 计算机研究与发展. 2020(10): 2201-2208 . 本站查看
    20. 张佳,王红. 基于生物特征识别的Android身份认证终端技术研究. 电子测试. 2020(24): 78-79+56 .

    Other cited types(27)

Catalog

    Article views (1632) PDF downloads (747) Cited by(47)
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return