• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Cui Zhendong, Wang Xicheng. Optimization Design of Turbine Engine Foundation on Grid[J]. Journal of Computer Research and Development, 2007, 44(10): 1652-1660.
Citation: Cui Zhendong, Wang Xicheng. Optimization Design of Turbine Engine Foundation on Grid[J]. Journal of Computer Research and Development, 2007, 44(10): 1652-1660.

Optimization Design of Turbine Engine Foundation on Grid

More Information
  • Published Date: October 14, 2007
  • Optimization design plays a very important role in the engineering applications, which often involves huge computational effort and requires powerful computing environment. However, the distributed, dynamic and heterogeneous characteristics make it more difficult to make good use of the abundant idle resources. In order to integrate the massive idle resources to super-powerful environment by resources sharing and cooperative working on Internet, a four-layer high-performance grid platform is constructed for solving the complex engineering optimization problems. The dynamic analysis program developed is sealed to the nodes of the grid as black-box for computing dynamic response. An effective optimization method using Kriging model is proposed to do dynamic optimization design of the turbine engine foundation on the grid platform. The optimization problem is to find the design variables such that both the maximum dynamic displacement and structural weight are minimum and certain side constraints are satisfied. The cross sections of the beams and columns are considered as design variables. Kriging model is used to build the approximate mapping relationship between the forced vibration amplitude and design variables, reducing expensive dynamic reanalysis. Two engineering examples are carried out successfully on the platform using the proposed method, and the computing efficiency is compared with different number grid nodes. In comparison with the result of sequential linear programming, the optimization results show that the method has good accuracy. The speed-up is also analyzed when the nodes with different number are used showing that the method has very high efficiency for grid computing, and the grid platform constructed is suitable for the engineering optimization design.
  • Related Articles

    [1]Zeng Zhi, Zhao Shuqing, Liu Huan, Zhao Xiang, Luo Minnan. Event-Driven Hypergraph Convolutional Network Based Rumor Detection Method[J]. Journal of Computer Research and Development, 2024, 61(8): 1982-1992. DOI: 10.7544/issn1000-1239.202440136
    [2]Liu Leyuan, Dai Yurou, Cao Yanan, Zhou Fan. Survey of User Geographic Location Prediction Based on Online Social Network[J]. Journal of Computer Research and Development, 2024, 61(2): 385-412. DOI: 10.7544/issn1000-1239.202220417
    [3]Yang Yanjie, Wang Li, Wang Yuhang. Rumor Detection Based on Source Information and Gating Graph Neural Network[J]. Journal of Computer Research and Development, 2021, 58(7): 1412-1424. DOI: 10.7544/issn1000-1239.2021.20200801
    [4]Hu Dou, Wei Lingwei, Zhou Wei, Huai Xiaoyong, Han Jizhong, Hu Songlin. A Rumor Detection Approach Based on Multi-Relational Propagation Tree[J]. Journal of Computer Research and Development, 2021, 58(7): 1395-1411. DOI: 10.7544/issn1000-1239.2021.20200810
    [5]Chen Huimin, Jin Sichen, Lin Wei, Zhu Zeyu, Tong Lingbo, Liu Yipeng, Ye Yining, Jiang Weihan, Liu Zhiyuan, Sun Maosong, Jin Jianbin. Quantitative Analysis on the Communication of COVID-19 Related Social Media Rumors[J]. Journal of Computer Research and Development, 2021, 58(7): 1366-1384. DOI: 10.7544/issn1000-1239.2021.20200818
    [6]Liu Jinshuo, Feng Kuo, Jeff Z. Pan, Deng Juan, Wang Lina. MSRD: Multi-Modal Web Rumor Detection Method[J]. Journal of Computer Research and Development, 2020, 57(11): 2328-2336. DOI: 10.7544/issn1000-1239.2020.20200413
    [7]Tan Zhenhua, Shi Yingcheng, Shi Nanxiang, Yang Guangming, Wang Xingwei. Rumor Propagation Analysis Model Inspired by Gravity Theory for Online Social Networks[J]. Journal of Computer Research and Development, 2017, 54(11): 2586-2599. DOI: 10.7544/issn1000-1239.2017.20160434
    [8]Wang Dong, Li Zhenyu, Xie Gaogang. Unbiased Sampling Technologies on Online Social Network[J]. Journal of Computer Research and Development, 2016, 53(5): 949-967. DOI: 10.7544/issn1000-1239.2016.20148387
    [9]Yang Hailu, Zhang Jianpei, and Yang Jing. Compressing Online Social Networks by Calibrating Structure Redundancy[J]. Journal of Computer Research and Development, 2013, 50(12): 2504-2519.
    [10]Wang Li, Cheng Suqi, Shen Huawei, Cheng Xueqi. Structure Inference and Prediction in the Co-Evolution of Social Networks[J]. Journal of Computer Research and Development, 2013, 50(12): 2492-2503.
  • Cited by

    Periodical cited type(9)

    1. 王吉宏,赵书庆,罗敏楠,刘欢,赵翔,郑庆华. 基于信息瓶颈理论的鲁棒少标签虚假信息检测. 计算机研究与发展. 2024(07): 1629-1642 . 本站查看
    2. Wanqiu CUI,Dawei WANG,Na HAN. Survey on Fake Information Generation, Dissemination and Detection. Chinese Journal of Electronics. 2024(03): 573-583 .
    3. 孟文凡,周丽华,王晓旭. 融合评论序列二义性与生成用户隐私特征的谣言检测. 计算机应用. 2024(08): 2342-2350 .
    4. 吴树芳,尹凯,吴汭漩,朱杰. 融入隐式情感和主题增强分布的网络敏感信息深度识别研究. 情报科学. 2024(05): 111-119 .
    5. 于运铎,徐铭达,许小可. 基于多尺度时效模体度的虚假信息传播机制. 电子科技大学学报. 2023(01): 154-160 .
    6. 吴小坤,李婉旖. 风险与技术双向驱动的互联网社会治理:核心议题与前沿趋势. 东岳论丛. 2023(04): 75-83 .
    7. 钟智锦,周金金,徐铭达,缪旭,许小可. 娱乐信息与公共信息的扩散竞争:网络结构和传播主体视角. 新闻与传播研究. 2023(03): 88-107+128 .
    8. 周小红. 基于微分方程的随机网络舆论传播模型研究与分析. 贵州大学学报(自然科学版). 2022(03): 27-32 .
    9. 李攀攀,谢正霞,王赠凯,靳锐. 一种基于信息DNA的互联网信息内容传播及演化追溯方法. 电信科学. 2022(11): 36-46 .

    Other cited types(15)

Catalog

    Article views (636) PDF downloads (389) Cited by(24)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return