• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Duan Hancong, Lu Xianliang, Tang Hui, Zhou Xu, Zhao Zhijun. Topology-Aware Node Rendezvous Algorithm Based on DHT[J]. Journal of Computer Research and Development, 2007, 44(9): 1557-1565.
Citation: Duan Hancong, Lu Xianliang, Tang Hui, Zhou Xu, Zhao Zhijun. Topology-Aware Node Rendezvous Algorithm Based on DHT[J]. Journal of Computer Research and Development, 2007, 44(9): 1557-1565.

Topology-Aware Node Rendezvous Algorithm Based on DHT

More Information
  • Published Date: September 14, 2007
  • In the peer-to-peer application models such as file sharing, media streaming and cooperative computing, nodes communicate by unicast and construct overlay networks. As overlay networks is usually built on top of existing substrate network, random joining of nodes will lead to topology mismatching, which will not only increase the communication delay between end nodes but also make a heavy bandwidth pressure on the substrate network. Current topology-matching algorithms suffer low scalability and long clustering delays. Proposed in this paper is a novel distributed topology-aware node rendezvous algorithm (TANRA) based on network coordinates and distributed hash table (DHT). In TANRA, firstly, 2-dimension network coordinates space of nodes is partitioned into many sectors which have the same area by means of using a cluster of concentric circles. Secondly, every sector is mapped to a unique region in the multi-layer name space of DHT based on thegeographic information in 2-dimension network coordinates space. Finally, the nodes can be clustered with its near neighbors in substrate network by calling two primitives of DHT, Put()/Get(), as the proximity between nodes is kept. The simulation results show that TANRA can efficiently provide the topology matching for upper applications with lower joining delay under a large number of end nodes.
  • Related Articles

    [1]Zeng Zhi, Zhao Shuqing, Liu Huan, Zhao Xiang, Luo Minnan. Event-Driven Hypergraph Convolutional Network Based Rumor Detection Method[J]. Journal of Computer Research and Development, 2024, 61(8): 1982-1992. DOI: 10.7544/issn1000-1239.202440136
    [2]Liu Leyuan, Dai Yurou, Cao Yanan, Zhou Fan. Survey of User Geographic Location Prediction Based on Online Social Network[J]. Journal of Computer Research and Development, 2024, 61(2): 385-412. DOI: 10.7544/issn1000-1239.202220417
    [3]Yang Yanjie, Wang Li, Wang Yuhang. Rumor Detection Based on Source Information and Gating Graph Neural Network[J]. Journal of Computer Research and Development, 2021, 58(7): 1412-1424. DOI: 10.7544/issn1000-1239.2021.20200801
    [4]Hu Dou, Wei Lingwei, Zhou Wei, Huai Xiaoyong, Han Jizhong, Hu Songlin. A Rumor Detection Approach Based on Multi-Relational Propagation Tree[J]. Journal of Computer Research and Development, 2021, 58(7): 1395-1411. DOI: 10.7544/issn1000-1239.2021.20200810
    [5]Chen Huimin, Jin Sichen, Lin Wei, Zhu Zeyu, Tong Lingbo, Liu Yipeng, Ye Yining, Jiang Weihan, Liu Zhiyuan, Sun Maosong, Jin Jianbin. Quantitative Analysis on the Communication of COVID-19 Related Social Media Rumors[J]. Journal of Computer Research and Development, 2021, 58(7): 1366-1384. DOI: 10.7544/issn1000-1239.2021.20200818
    [6]Liu Jinshuo, Feng Kuo, Jeff Z. Pan, Deng Juan, Wang Lina. MSRD: Multi-Modal Web Rumor Detection Method[J]. Journal of Computer Research and Development, 2020, 57(11): 2328-2336. DOI: 10.7544/issn1000-1239.2020.20200413
    [7]Tan Zhenhua, Shi Yingcheng, Shi Nanxiang, Yang Guangming, Wang Xingwei. Rumor Propagation Analysis Model Inspired by Gravity Theory for Online Social Networks[J]. Journal of Computer Research and Development, 2017, 54(11): 2586-2599. DOI: 10.7544/issn1000-1239.2017.20160434
    [8]Wang Dong, Li Zhenyu, Xie Gaogang. Unbiased Sampling Technologies on Online Social Network[J]. Journal of Computer Research and Development, 2016, 53(5): 949-967. DOI: 10.7544/issn1000-1239.2016.20148387
    [9]Yang Hailu, Zhang Jianpei, and Yang Jing. Compressing Online Social Networks by Calibrating Structure Redundancy[J]. Journal of Computer Research and Development, 2013, 50(12): 2504-2519.
    [10]Wang Li, Cheng Suqi, Shen Huawei, Cheng Xueqi. Structure Inference and Prediction in the Co-Evolution of Social Networks[J]. Journal of Computer Research and Development, 2013, 50(12): 2492-2503.
  • Cited by

    Periodical cited type(9)

    1. 王吉宏,赵书庆,罗敏楠,刘欢,赵翔,郑庆华. 基于信息瓶颈理论的鲁棒少标签虚假信息检测. 计算机研究与发展. 2024(07): 1629-1642 . 本站查看
    2. Wanqiu CUI,Dawei WANG,Na HAN. Survey on Fake Information Generation, Dissemination and Detection. Chinese Journal of Electronics. 2024(03): 573-583 .
    3. 孟文凡,周丽华,王晓旭. 融合评论序列二义性与生成用户隐私特征的谣言检测. 计算机应用. 2024(08): 2342-2350 .
    4. 吴树芳,尹凯,吴汭漩,朱杰. 融入隐式情感和主题增强分布的网络敏感信息深度识别研究. 情报科学. 2024(05): 111-119 .
    5. 于运铎,徐铭达,许小可. 基于多尺度时效模体度的虚假信息传播机制. 电子科技大学学报. 2023(01): 154-160 .
    6. 吴小坤,李婉旖. 风险与技术双向驱动的互联网社会治理:核心议题与前沿趋势. 东岳论丛. 2023(04): 75-83 .
    7. 钟智锦,周金金,徐铭达,缪旭,许小可. 娱乐信息与公共信息的扩散竞争:网络结构和传播主体视角. 新闻与传播研究. 2023(03): 88-107+128 .
    8. 周小红. 基于微分方程的随机网络舆论传播模型研究与分析. 贵州大学学报(自然科学版). 2022(03): 27-32 .
    9. 李攀攀,谢正霞,王赠凯,靳锐. 一种基于信息DNA的互联网信息内容传播及演化追溯方法. 电信科学. 2022(11): 36-46 .

    Other cited types(15)

Catalog

    Article views (876) PDF downloads (619) Cited by(24)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return