• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Peng Xiaohui, Zhang Xingzhou, Wang Yifan, Chao Lu. Web Enabled Things Computing System[J]. Journal of Computer Research and Development, 2018, 55(3): 572-584. DOI: 10.7544/issn1000-1239.2018.20170867
Citation: Peng Xiaohui, Zhang Xingzhou, Wang Yifan, Chao Lu. Web Enabled Things Computing System[J]. Journal of Computer Research and Development, 2018, 55(3): 572-584. DOI: 10.7544/issn1000-1239.2018.20170867

Web Enabled Things Computing System

More Information
  • Published Date: February 28, 2018
  • The rising edge computing paradigm tries to shift some computing tasks from cloud to devices recently, which reduces the computing load of cloud and traffic load of the Internet. The things computing system consists of the devices which are physical world oriented with physical functionalities. It is a great challenge to design a unified system architecture for things computing system because of the system diversity. The architecture of the modern Web system is an efficient solution for the diversity issue. However,due to the resource-constrained feature extending the Web architecture to the things computing system is also very difficult. In this paper, we first introduce the concept of edge computing system and things computing system, and summarize the challenges brought by diversity and resource-constrained features of things computing system. Then, a detailed study of the state-of-the-art technologies, including REST principle, script languages and debugging technique for extending the Web to things computing system, is presented. Most of the related work tried to modify the “Uniform Interface” principle to adapt to edge system. We conclude from the examined literature that things computing system is a massive market, but there is still no unified system architecture which supports both the Web and intelligence. Finally, we present some future research directions for things computing system including the unified system architecture, efficient Web technologies, supporting intelligence and debugging techniques.
  • Related Articles

    [1]Wang Yong, Xiong Yi, Yang Tianyu, Shen Yiran. A User Security Continuous Authentication Method for Earable Devices[J]. Journal of Computer Research and Development, 2024, 61(11): 2821-2834. DOI: 10.7544/issn1000-1239.202440415
    [2]Zhang Yan, Li Jiatong, Song Xiaoyi, Fan Yuting, Lu Yemian, Zhang Ruoding, Wang Zixin. Survey of IoT Device Security Detection[J]. Journal of Computer Research and Development, 2023, 60(10): 2271-2290. DOI: 10.7544/issn1000-1239.202330482
    [3]Liu Qixu, Jin Ze, Chen Canhua, Gao Xinbo, Zheng Ningjun, Fang Yiwei, Feng Yun. Survey on Internet of Things Access Control Security[J]. Journal of Computer Research and Development, 2022, 59(10): 2190-2211. DOI: 10.7544/issn1000-1239.20220510
    [4]Li Shuangfeng. TensorFlow Lite: On-Device Machine Learning Framework[J]. Journal of Computer Research and Development, 2020, 57(9): 1839-1853. DOI: 10.7544/issn1000-1239.2020.20200291
    [5]Shi Yahu, Shi Hailong, Cui Li. EasiDARM: Distributed Based Adaptive Register Method for Internet of Things[J]. Journal of Computer Research and Development, 2019, 56(3): 453-466. DOI: 10.7544/issn1000-1239.2019.20170667
    [6]Ni Mingtao, Zhao Bo, Wu Fusheng, Fan Peiru. CREBAD: Chip Radio Emission Based Anomaly Detection Scheme of IoT Devices[J]. Journal of Computer Research and Development, 2018, 55(7): 1451-1461. DOI: 10.7544/issn1000-1239.2018.20180067
    [7]Zhang Yuqing, Zhou Wei, Peng Anni. Survey of Internet of Things Security[J]. Journal of Computer Research and Development, 2017, 54(10): 2130-2143. DOI: 10.7544/issn1000-1239.2017.20170470
    [8]Kong Junjun, Guo Yao, Chen Xiangqun, and Shao Weizhong. An Approach to Building Systems and Applications of Internet of Things with Smart Things[J]. Journal of Computer Research and Development, 2013, 50(6): 1198-1209.
    [9]Jianjia Wu and Wei Zhao. WInternet: From Net of Things to Internet of Things[J]. Journal of Computer Research and Development, 2013, 50(6): 1127-1134.
    [10]Liu Jingning, Xie Liming, Feng Dan, and Lü Man. Research on Object Storage Device End Data Management Strategy[J]. Journal of Computer Research and Development, 2010, 47(10): 1832-1839.
  • Cited by

    Periodical cited type(11)

    1. 邬天恺,徐弘毅,王勇. 基于边缘计算的可重构波束控制技术研究. 电子器件. 2024(02): 371-376 .
    2. 邢文娟,雷波,赵倩颖. 算力基础设施发展现状与趋势展望. 电信科学. 2022(06): 51-61 .
    3. 刘庆一,赵义强,孙文海,刘瑞华,孙艳杰. 智能边缘计算盒应用设计研究. 信息技术与信息化. 2022(07): 206-209 .
    4. 张旭,崔建峰,杨威. 面向边缘计算环境的服务器性能评估及优化模型. 厦门理工学院学报. 2022(03): 56-63 .
    5. 赵二虎,吴济文,查晶晶,郭振,徐勇军. 基于ARM+DLP+SRIO的嵌入式智能计算系统研究. 电子学报. 2021(03): 443-453 .
    6. 张科,王娟,张乾. 基于计算机网络技术的嵌入式实时操作系统设计. 现代电子技术. 2021(16): 105-109 .
    7. 郑贵林,余星烨. 基于边缘计算的智能用电管控系统设计及应用. 电测与仪表. 2021(08): 28-35 .
    8. 姚艳,牛明雷,孙法军,姚京婵,常晓燕. 基于微服务架构的农业转移支付项目管理系统设计与实现. 中国农业科学. 2021(15): 3207-3218 .
    9. 施巍松,张星洲,王一帆,张庆阳. 边缘计算:现状与展望. 计算机研究与发展. 2019(01): 69-89 . 本站查看
    10. 徐志伟,曾琛,朝鲁,彭晓晖. 面向控域的体系结构:一种智能万物互联的体系结构风格. 计算机研究与发展. 2019(01): 90-102 . 本站查看
    11. 朝鲁,彭晓晖,徐志伟. 变熵画像:一种数量级压缩物端数据的多粒度信息模型. 计算机研究与发展. 2018(08): 1653-1666 . 本站查看

    Other cited types(3)

Catalog

    Article views (1838) PDF downloads (909) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return