高级检索
    于婷婷, 李超, 王博祥, 陈睿, 江云松. 中断驱动型航天嵌入式软件原子性违反检测方法[J]. 计算机研究与发展, 2023, 60(2): 294-310. DOI: 10.7544/issn1000-1239.202220908
    引用本文: 于婷婷, 李超, 王博祥, 陈睿, 江云松. 中断驱动型航天嵌入式软件原子性违反检测方法[J]. 计算机研究与发展, 2023, 60(2): 294-310. DOI: 10.7544/issn1000-1239.202220908
    Yu Tingting, Li Chao, Wang Boxiang, Chen Rui, Jiang Yunsong. Atomicity Violation Detection for Interrupt-Driven Aerospace Embedded Software[J]. Journal of Computer Research and Development, 2023, 60(2): 294-310. DOI: 10.7544/issn1000-1239.202220908
    Citation: Yu Tingting, Li Chao, Wang Boxiang, Chen Rui, Jiang Yunsong. Atomicity Violation Detection for Interrupt-Driven Aerospace Embedded Software[J]. Journal of Computer Research and Development, 2023, 60(2): 294-310. DOI: 10.7544/issn1000-1239.202220908

    中断驱动型航天嵌入式软件原子性违反检测方法

    Atomicity Violation Detection for Interrupt-Driven Aerospace Embedded Software

    • 摘要: 嵌入式软件的可信性对航天任务的成败至关重要. 航天嵌入式软件广泛采用中断驱动的并发机制, 不确定的中断抢占可能导致并发缺陷, 引发严重的安全问题. 研究表明原子性违反是中断并发缺陷中最突出的一类缺陷模式. 目前面向中断驱动型嵌入式软件的原子性违反检测方法都无法同时实现高精度和高可扩展性, 且其对真实航天嵌入式软件的有效性尚未得到证实. 为了有效提升检测该类缺陷的精度与效率, 对82个航天嵌入式软件原子性违反进行实证研究, 获得该类缺陷在原子区范围、中断嵌套层数、访问交错模式、共享数据访问方式、访问粒度等5个方面的表现特征. 并在此基础上, 提出一个精确、高效的原子性违反静态检测方法intAtom-S. 首先, 基于一个由数值不变式参数化的细粒度内存访问模型, 引入基于规则的方法剔除标志变量访问, 并采用抽象解释进行精确的共享数据分析, 该分析能将共享数据访问粒度精确至数组元素, 并可识别共享的内存映射I/O地址. 然后, 使用轻量级数据流分析技术匹配符合缺陷访问交错模式的所有并发三次访问序, 作为潜在的原子性违反缺陷候选. 最后, 采用基于路径条件的约束求解对缺陷候选中的串行访问对和并发三次访问序进行路径可行性分析, 逐步消除误报, 得到最终的原子性违反结果. 在基准测试集和8个真实航天嵌入式软件上的实验表明, 与目前最先进的方法相比, intAtom-S误报率降低了72%, 检测效率提高了3倍. 此外, 该方法能够快速完成对真实航天嵌入式软件的分析, 平均误报率仅为8.9%, 并发现了23个已被开发人员确认的缺陷.

       

      Abstract: The dependability of embedded software is vital to the success of the aerospace mission. Aerospace embedded software extensively uses interrupt-driven concurrency mechanisms. However, uncertain interleaving execution of interrupts may cause concurrency bugs, which could result in serious safety problems. Researches had showed that atomicity violation was the most prominent interrupt concurrency bug. Current atomicity violation detection methods for interrupt-driven embedded software cannot achieve both high precision and high scalability, and their effectiveness on real embedded software has not been evaluated. To significantly improve the ability of techniques in bug detection, we design an empirical study on 82 atomicity violations in aerospace embedded software and gain their manifestation characteristics of atomic region range, the number of interrupt nesting levels, shared data access interleaving pattern, access patterns and access granularities. On this basis, we present intAtom-S, a precise and efficient static detection technique for atomicity violations. Firstly, to realize accurate analysis of shared data, intAtom-S constructs a fine-grained memory model parameterized by numerical invariants, and introduces rule-based method to eliminate flag variable accesses. Moreover, it can handle array elements as well as shared I/O addresses. Then, a lightweight data flow analysis technique is used to find all access interleavings that match the patterns as potential bug candidates. Finally, intAtom-S adopts a consecutive access pair feasibility analysis and access interleaving feasibility analysis to prune the infeasible paths. intAtom-S gradually eliminates false positives, and obtains the final atomicity violations. Experiments on a benchmark and 8 real-world aerospace embedded software show that intAtom-S reduces the false positive rate by 72% and improves the detection speed by 3 times, compared with the state-of-the-art methods. Furthermore, it can finish analyzing the real-world aerospace embedded software very fast with an average false positive rate of 8.9%, while finding 23 bugs that had been confirmed by developers.

       

    /

    返回文章
    返回