计算机研究与发展 ›› 2015, Vol. 52 ›› Issue (4): 779-788.doi: 10.7544/issn1000-1239.2015.20148336
所属专题: 2015大数据驱动的网络科学
李勇1,2, 孟小峰1, 刘继3, 王常青4
Li Yong1,2,Meng Xiaofeng1, Liu Ji3, Wang Changqing4
摘要: 网络大数据中与Web用户行为相关的数据,例如在线点击数据和通讯记录等,为人们深度挖掘和定量分析人类兴趣动力学带来了机遇,这些在线行为数据被称为大数据时代的“小数据”,有助于揭示许多复杂的人类社会与经济现象.Web用户行为建模时常见的前提假设就是人的行为符合Markov过程,用户下一行为仅依赖于当前行为,与过去的历史行为无关.然而,在线用户行为是一个复杂过程,常常依赖于人的兴趣,对于人类兴趣动力学的本质规律目前知之甚少.利用中国互联网络信息中心提供的30000多名在线用户行为记录数据,基于块熵理论对在线用户行为进行分类研究,通过信息论分析方法,结合熵增曲线的离散导数和积分理论,分析在线用户点击行为的随机性和记忆性特征.研究表明,与常见的假设不同,Web用户的行为并不是一个简单的Markov过程,而是一个符合幂率的非周期无限长程记忆过程;进一步还发现,用户在线连续点击7个兴趣点,其行为的平均预测增益就可达到95.3%以上,可为大数据时代在线用户兴趣精准预测提供理论指导.
中图分类号: