计算机研究与发展 ›› 2018, Vol. 55 ›› Issue (1): 125-138.doi: 10.7544/issn1000-1239.2018.20160547
谢振平,金晨,刘渊
Xie Zhenping, Jin Chen, Liu Yuan
摘要: 个性化推荐正成为“互联网+”和“大数据”时代信息网络服务的基本形式,虽然其已在电子商务和社交媒体的广泛应用中产生了巨大的商业价值,但在具有巨大潜在社会价值的个性化知识学习领域,相关研究与应用还较为稀少.研究提出一种基于建构主义学习理论的个性化知识推荐方法——建构推荐模型.新模型首先考虑将知识系统以知识网络的形式进行表达,随后引入最近邻优先的候选知识选择策略,以及基于最大可学习支撑度优先的top-K未学知识推荐算法.建构推荐模型通过知识网络的知识关联结构挖掘用户知识需求,并推荐给出最具建构学习价值的待学新知识.以饮食健康知识系统学习为例的实验分析表明,新模型在多种情况下推荐产生的个性化知识序列均具有较强的知识关联性和较高的知识体系覆盖率.
中图分类号: