计算机研究与发展 ›› 2017, Vol. 54 ›› Issue (7): 1477-1487.doi: 10.7544/issn1000-1239.2017.20160154
许行1,王文剑1,2,任丽芳1,3
Xu Hang1, Wang Wenjian1,2, Ren Lifang1,3
摘要: 单调分类问题是特征与类别之间带有单调性约束的有序分类问题.对于符号数据的单调分类问题已有较好的方法,但对于数值数据,现有的方法分类精度和运行效率有限.提出一种基于决策森林的单调分类方法(monotonic classification method based on decision forest, MCDF),设计采样策略来构造决策树,可以保持数据子集与原数据集分布一致,并通过样本权重避免非单调数据的影响,在保持较高分类精度的同时有效提高了运行效率,同时这种策略可以自动确定决策森林中决策树的个数.在决策森林进行分类时,给出了决策冲突时的解决方法.提出的方法既可以处理符号数据,也可以处理数值数据.在人造数据集、UCI及真实数据集上的实验数据表明:该方法可以提高单调分类性能和运行效率,缩短分类规则的长度,解决数据集规模较大的单调分类问题.
中图分类号: