计算机研究与发展 ›› 2018, Vol. 55 ›› Issue (11): 2419-2429.doi: 10.7544/issn1000-1239.2018.20170227
徐晓,丁世飞,孙统风,廖红梅
Xu Xiao, Ding Shifei, Sun Tongfeng, Liao Hongmei
摘要: 密度峰值聚类算法(density peaks clustering algorithm, DPC)是2014年提出的一种新型聚类分析算法,它基于聚类中心局部密度大以及与密度更大点之间的距离较远两大特点绘制决策图寻找聚类中心,从而得到任意形状的簇.但在寻找聚类中心的过程中,求解局部密度以及高密度距离属性都依赖于相似度矩阵的计算,计算复杂度较高,限制了密度峰值聚类算法在大规模数据集中的应用.针对此不足,提出基于网格筛选的密度峰值聚类算法(density peaks clustering algorithm based on grid screening, SDPC),根据数据的不均匀分布,使用网格化方法去除部分密度稀疏的点,然后再使用密度峰值聚类算法中决策图的方法选取聚类中心,可以在保证聚类准确性的基础上有效降低计算复杂度.理论分析和实验测试表明:基于网格筛选的密度峰值聚类算法不仅可以对大规模数据集进行正确的聚类,还极大地降低了计算复杂度.
中图分类号: