计算机研究与发展 ›› 2019, Vol. 56 ›› Issue (7): 1420-1431.doi: 10.7544/issn1000-1239.2019.20180557
刘昊霖1,2,池金龙1,邓清勇1,2,彭鑫3,裴廷睿1,2
Liu Haolin1,2, Chi Jinlong1, Deng Qingyong1,2, Peng Xin3, Pei Tingrui1,2
摘要: 在稀疏重构中,重构误差项和稀疏项通常使用一个正则化参数聚合成单目标函数,很难实现2个目标的均衡优化,这个缺陷通常导致稀疏重构精度低.为此,提出一种自适应局部搜索的多目标进化算法.首先,基于范数和l\-1范数和l\-{1/2}范数分别设计了2种梯度迭代软阈值法的局部搜索方法求得相应解,这2种局部搜索方法可以提高解的收敛速度和精确度;其次,通过比较对应的目标函数值来竞争选取每轮的优胜解;然后,采用基于竞争成功率的自适应择优局部搜索方法来产生后期解;最后,在帕雷托前沿面的膝盖区域上采用角度法选取最优解.实验结果表明:测量误差和稀疏项可以达到平衡,在重构精度方面,提出的方法远高于现有的传统单目标方法.相比于StEMO算法,当测量维度M=600时,该方法可以提高33.8%;当噪声强度δ=0.002时可以提高82.7%;当稀疏率K/N=0.3时可以提高7.38%.
中图分类号: