计算机研究与发展 ›› 2020, Vol. 57 ›› Issue (12): 2490-2500.doi: 10.7544/issn1000-1239.2020.20200725
所属专题: 2020人机混合增强智能的典型应用专题
秦涛1,2,沈壮1,2,刘欢1,2,陈周国3
Qin Tao1,2, Shen Zhuang1,2, Liu Huan1,2, Chen Zhouguo3
摘要: 社交网络中的舆情事件关乎社会的和谐与稳定,分析事件的演化趋势并进行管控能够有效降低恶性舆情事件的影响.但是,高效的舆情管控却面临标注数据少、管控资源有限的难题,采用人机混合增强技术,充分利用少量标注样本中的专家知识,是建立舆情演化态势评估模型的可行思路之一.据此,提出一种基于排序学习的舆情事件演化趋势重要性评估算法,在模型训练过程中,充分利用标注数据中的专家知识以及有标签数据和无标签数据的关联关系,筛选重要舆情事件进行管控,提升管控资源利用效能.首先,结合舆情管控经验和需求,从“人”“事”“势”等三要素出发,构建易获取、可量化、有含义的舆情事件演化态势评估指标体系;其次,基于图卷积神经网络构建舆情演化趋势评估模型,利用局部敏感Hash算法挖掘数据的空间结构信息,并利用图卷积求取数据及其邻域的混合特征;最后,针对有标签数据和无标签数据设计相应的损失函数,实现标注数据中专家知识和无标注数据中空间结构信息的综合利用.在公开数据集MQ2007-semi和MQ2008-semi上验证了算法的有效性,在自主构建的舆情数据集上验证了算法的实用性和泛化性.实验结果表明,所提算法可以根据少量的专家知识或标注数据,实现网络舆情事件演化态势的评估,为资源有限条件下的舆情事件管控提供决策支撑.
中图分类号: