计算机研究与发展 ›› 2020, Vol. 57 ›› Issue (7): 1522-1530.doi: 10.7544/issn1000-1239.2020.20190479
于海涛1,杨小汕2,徐常胜1,2
Yu Haitao1, Yang Xiaoshan2, Xu Changsheng1,2
摘要: 视频生成是计算机视觉和多媒体领域一个重要而又具有挑战性的任务.现有的基于对抗生成网络的视频生成方法通常缺乏一种有效可控的连贯视频生成方式.提出一种新的多模态条件式视频生成模型.该模型使用图片和文本作为输入,通过文本特征编码网络和运动特征解码网络得到视频的运动信息,并结合输入图片生成连贯的运动视频序列.此外,该方法通过对输入图片进行仿射变换来预测视频帧,使得生成模型更加可控、生成结果更加鲁棒.在SBMG(single-digit bouncing MNIST gifs),TBMG(two-digit bouncing MNIST gifs)和KTH(kungliga tekniska hgskolan human actions)数据集上的实验结果表明:相较于现有的视频生成方法,生成结果在目标清晰度和视频连贯性方面都具有更好的效果.另外定性评估和定量评估(SSIM(structural similarity index)与PSNR(peak signal to noise ratio)指标)表明提出的多模态视频帧生成网络在视频生成中起到了关键作用.
中图分类号: