李胜梅1 程步奇2 高兴誉3 乔林1 汤志忠1
Li Shengmei1, Cheng Buqi2, Gao Xingyu3, Qiao Lin1, and Tang Zhizhong1
摘要: 性能敏感度反映了应用程序性能相对于性能影响因素的变化率,对性能敏感度的量化分析可为体系结构设计和程序性能优化提供有意义的参考和指导.提出了一种分析程序性能敏感度的非线性回归模型(PS-NLRM),能够量化不同应用程序的性能敏感度.通过主成分分析消除了影响性能的性能事件之间的相关性,通过曲线拟合引入非线性项,建立了程序性能CPI和性能事件之间的非线性回归方程.模型应用在SPEC CPU2006整型程序之上,通过了t检验和F检验,达到90%以上的拟合度.基于非线性回归方程相对于性能事件的偏导数,得到不同应用程序的性能对性能事件的敏感度.利用性能敏感度对SPEC CPU2006整型程序性能进行预测的平均相对误差约为4.5%,比传统线性回归模型预测误差下降50%.