ISSN 1000-1239 CN 11-1777/TP

• 论文 • 上一篇    下一篇

基于极大模糊熵原理的模糊推理反向三I算法

侯 健1 彭家寅2 张宇卓1 张诚一3   

  1. 1(北京师范大学数学科学学院 北京 100875) 2(内江师范学院数学系 四川内江 641112) 3(海南师范大学计算机科学与教育技术系 海口 571158) (houjian0351@sohu.com)
  • 出版日期: 2006-07-15

A Reverse Triple I Algorithm for Fuzzy Reasoning Based on Maximum Fuzzy Entropy Principle

Hou Jian1, Peng Jiayin2, Zhang Yuzhuo1, and Zhang Chengyi3   

  1. 1(School of Mathematical Sciences, Beijing Normal University, Beijing 100875) 2(Department of Mathematics, Neijiang Teachers College, Sichuan Neijiang 641112) 3(Department of Computer Science and Education Technology, Hainan Normal University, Haikou 571158)
  • Online: 2006-07-15

摘要: 提出了用模糊熵来度量反向三I模糊推理结果的模糊程度,给出了模糊熵反向三I原则,讨论了FMP和FMT问题的模糊熵反向三I支持算法解存在的条件,分别给出了几个常见蕴涵算子的FMP问题与FMT问题的模糊熵反向三I解的计算公式.

关键词: 模糊推理, 模糊熵, 极大模糊熵原理, 模糊熵反向三I算法, 模糊蕴涵算子

Abstract: The fuzzy degree of a fuzzy reverse triple I inference conclusion is measured by fuzzy entropy, and a fuzzy entropy reverse triple I principle is introduced. Existence conditions of solutions are discussed for the fuzzy entropy reverse triple I algorithms for FMP and FMT problems, and the computing formulas of the algorithm based on some common implication operators are provided.

Key words: fuzzy reasoning, fuzzy entropy, maximum fuzzy entropy principle, fuzzy entropy reverse triple I algorithm, fuzzy implication operator