计算机研究与发展 ›› 2014, Vol. 51 ›› Issue (10): 2295-2301.doi: 10.7544/issn1000-1239.2014.20130188
崔振1,2,3,山世光2,陈熙霖2
Cui Zhen1,2,3, Shan Shiguang2, Chen Xilin2
摘要: 在监督场景下线性判别分析(linear discriminant analysis, LDA)是一种非常有效的特征提取方法.然而,LDA在小样本情况下通常会出现过拟合现象,并且学习的投影变换难以给出人类认知上的解释.针对这些问题,特别是可解释性结构的发现,借助于LDA的线性回归模型和结构化稀疏L\-{2,1}范数,提出了结构化稀疏线性判别分析(structured sparse LDA, SSLDA)方法.进一步,为了去除线性变换间的相关性,提出了正交化的SSLDA(orthogonalized SSLDA, OSSLDA),它能更加有效地学习到细致的结构信息.为了求解这2个模型,引入了一个半二次的优化算法,它在投影变换和新引入的辅助变量之间采用交替优化的思想.为了验证所提出的方法,在AR、扩展的YaleB和MultiPIE 3个人脸数据库上对比了LDA及其变种方法,实验表明了所提出方法的有效性以及可解释性.
中图分类号: