ISSN 1000-1239 CN 11-1777/TP

计算机研究与发展 ›› 2015, Vol. 52 ›› Issue (4): 918-928.doi: 10.7544/issn1000-1239.2015.20131352

• 软件技术 • 上一篇    下一篇

Vague区域关系与方向关系的表示及复合推理

李松1, 张丽平1, 郝晓红2, 郝忠孝1,3   

  1. 1(哈尔滨理工大学计算机科学与技术学院 哈尔滨 150080); 2(哈尔滨理工大学计算中心 哈尔滨 150080); 3(哈尔滨工业大学计算机科学与技术学院 哈尔滨 150001) (lisongbeifen@163.com)
  • 出版日期: 2015-04-01
  • 基金资助: 
    基金项目:国家自然科学基金项目(61370084);黑龙江省自然科学基金项目(F201302,F201014);黑龙江省教育厅科学技术研究项目(12531120,12531z004)

Representation and Compound Reasoning of Vague Region Relations and Direction Relations

Li Song1,Zhang Liping1,Hao Xiaohong2, Hao Zhongxiao1,3   

  1. 1(College of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080); 2(Computer Center, Harbin University of Science and Technology, Harbin 150080); 3(College of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001)
  • Online: 2015-04-01

摘要: Vague区域关系和Vague方向关系的表示和推理在空间数据库、网络信息安全、数据挖掘和人工智能等领域具有重要的意义. 为了处理复杂的Vague区域关系和Vague方向关系表示及其复合推理等问题,基于Vague集对Vague区域关系和方向关系进行了系统研究. 给出了Vague区域关系交集矩阵和表示模型;为了处理由参照对象的不确定性所导致的方向关系的不确定性,基于Vague集提出了Vague方向关系的交集矩阵表示方法;为了对动态Vague方向关系进行分析、预测与推理,详细研究了Vague方向关系的动态性和动态邻接关系,给出了Vague方向关系的反向方向关系处理方法;进一步研究了Vague区域关系和Vague方向关系的复合关联推理方法. 理论研究和实验分析表明研究成果可较好地处理Vague区域关系和Vague方向关系及其复合关联推理等问题,增强了数据信息处理系统对复杂不确定空间关系的处理能力.

关键词: Vague集, Vague区域, Vague区域关系, Vague方向关系, 反向关系, 复合推理

Abstract: Representation and reasoning of Vague region relations and direction relations have important significance in spatial database, network information security, data mining and artificial intelligence, etc. To deal with the complex representations and the compound reasoning of Vague region relations and direction relations, Vague region relations and direction relations are systematically analyzed based on the Vague sets which can deal with a great deal of uncertainty information. Based on the Vague sets, the intersection matrices and the representation model of the Vague regions are given. To handle the uncertainty of the direction relations caused by the ambiguity of Vague regions, Vague direction points and Vague direction space are defined based on the Vague sets and the intersection matrices of the direction relations are studied. To analyze and reason the dynamic Vague direction relations, the dynamic adjacency table of the Vague direction space are given. Furthermore, the methods for the reverse direction relations and the related reasoning of the Vague region relations and the Vague direction relations are studied also. The theoretical research and the experimental analysis show that the production in this work can deal with the key problems of the Vague region relations and the Vague direction relations and it can handle the complex reasoning.

Key words: Vague sets, Vague region, Vague region relations, Vague direction relations, reverse relation, compound reasoning

中图分类号: