计算机研究与发展 ›› 2016, Vol. 53 ›› Issue (6): 1352-1364.doi: 10.7544/issn1000-1239.2016.20140695
郭彩华,王斌,朱怀杰,杨晓春
Guo Caihua, Wang Bin, Zhu Huaijie, Yang Xiaochun
摘要: 随着社会网络的快速发展和普及,如何保护社会网络中的敏感信息已成为当前数据隐私保护研究领域的热点问题.对此,近年来出现了多种社会网络匿名化技术. 现有的匿名技术大多把社会网络抽象成简单图,然而实际生活中存在大量增量变化的社会网络,例如email通信网络,简单图并不能很好地刻画这种增量变化,因此,将社会网络抽象成增量序列具有现实意义.同时,在实际生活中大部分网络是带有权重信息的,即很多社会网络以加权图的形式出现,加权图与简单图相比携带了更多社会网络中的信息,也会带来更多的隐私泄露. 将增量的动态社会网络抽象成一个加权图的增量序列. 为了匿名加权图增量序列,提出了加权图增量序列k-匿名隐私保护模型,并设计了基于权重链表的baseline匿名算法WLKA和基于超图的匿名算法HVKA来防止基于结点标签和权重链表的攻击. 最后,通过在真实数据集上的大量测试,证明了WLKA算法能够保证加权图增量序列隐私保护的有效性,HVKA算法则在WLKA的基础上更好地保留了原图的结构性质并提高了权重信息的可用性,同时还降低了匿名过程的时间代价.
中图分类号: