计算机研究与发展 ›› 2019, Vol. 56 ›› Issue (8): 1670-1676.doi: 10.7544/issn1000-1239.2019.20190332
所属专题: 2019人工智能前沿进展专题
任婕,侯博建,姜远
Ren Jie, Hou Bojian, Jiang Yuan
摘要: 多示例学习已经广泛地应用到各个领域,如图像检索、文本分类、人脸识别等.而近年来深度神经网络也成功地运用到各个任务和问题上,MI-Nets是深度神经网络在多示例学习领域一个成功的应用.虽然MI-Nets很成功,但其主要在图像相关的任务上表现突出,而在非图像任务比如文本分类任务上的性能并不令人满意.而最近2年兴起的深度森林在非图像任务上取得了较好的成绩,并因为其相对于深度神经网络有较少的参数和较稳定的性能而受到青睐.所以用深度森林来提升多示例学习性能具有可行性.但由于深度森林结构的限制,并不能把组成深度森林的每一个森林都直接替换成包级别的森林,需要修改深度森林的结构来达到目的.提出了一种新的深度森林架构MIDF.在该架构下,为了使得中间层的输出分布可以和包中的示例拼接成功,拼接时把包里的每个示例都看作是一个包,从而使得级联结构依然有效.另外,还能自动确认深度森林的层数.实验结果表明:该方法在图像任务上的性能与擅长处理图像任务的MI-Nets相当;而在文本数据上,该方法取得了比MI-Nets和其他基线算法更好的效果.
中图分类号: