[1] |
廖海斌, 徐斌. 基于性别和年龄因子分析的鲁棒性人脸表情识别[J]. 计算机研究与发展, 2021, 58(3): 528-538. |
[2] |
陈善静, 向朝参, 康青, 吴韬, 刘凯, 冯亮, 邓涛. 基于多源遥感时空谱特征融合的滑坡灾害检测方法[J]. 计算机研究与发展, 2020, 57(9): 1877-1887. |
[3] |
张世琨, 谢睿, 叶蔚, 陈龙. 基于关键词的代码自动摘要[J]. 计算机研究与发展, 2020, 57(9): 1987-2000. |
[4] |
陈彦敏, 王皓, 马建辉, 杜东舫, 赵洪科. 基于层级注意力机制的互联网用户信用评估框架[J]. 计算机研究与发展, 2020, 57(8): 1755-1768. |
[5] |
李若南, 李金宝. 一种无源被动室内区域定位方法的研究[J]. 计算机研究与发展, 2020, 57(7): 1381-1392. |
[6] |
张艺璇, 郭斌, 刘佳琪, 欧阳逸, 於志文. 基于多级注意力机制网络的app流行度预测[J]. 计算机研究与发展, 2020, 57(5): 984-995. |
[7] |
张莹莹, 钱胜胜, 方全, 徐常胜. 基于多模态知识感知注意力机制的问答方法[J]. 计算机研究与发展, 2020, 57(5): 1037-1045. |
[8] |
程艳, 尧磊波, 张光河, 唐天伟, 项国雄, 陈豪迈, 冯悦, 蔡壮. 基于注意力机制的多通道CNN和BiGRU的文本情感倾向性分析[J]. 计算机研究与发展, 2020, 57(12): 2583-2595. |
[9] |
尉桢楷, 程梦, 周夏冰, 李志峰, 邹博伟, 洪宇, 姚建民. 基于类卷积交互式注意力机制的属性抽取研究[J]. 计算机研究与发展, 2020, 57(11): 2456-2466. |
[10] |
李洪均, 丁宇鹏, 李超波, 张士兵. 基于特征融合时序分割网络的行为识别研究[J]. 计算机研究与发展, 2020, 57(1): 145-158. |
[11] |
张志昌,张珍文,张治满. 基于IndRNN-Attention的用户意图分类[J]. 计算机研究与发展, 2019, 56(7): 1517-1524. |
[12] |
石乐义,朱红强,刘祎豪,刘佳. 基于相关信息熵和CNN-BiLSTM的工业控制系统入侵检测[J]. 计算机研究与发展, 2019, 56(11): 2330-2338. |
[13] |
孙小婉,王英,王鑫,孙玉东. 面向双注意力网络的特定方面情感分析模型[J]. 计算机研究与发展, 2019, 56(11): 2384-2395. |
[14] |
张露,王华彬,陶亮,周健. 基于分类距离分数的自适应多模态生物特征融合[J]. 计算机研究与发展, 2018, 55(1): 151-162. |
[15] |
梁斌,刘全,徐进,周倩,章鹏. 基于多注意力卷积神经网络的特定目标情感分析[J]. 计算机研究与发展, 2017, 54(8): 1724-1735. |