计算机研究与发展 ›› 2020, Vol. 57 ›› Issue (10): 2241-2250.doi: 10.7544/issn1000-1239.2020.20200463
所属专题: 2020密码学与数据隐私保护研究专题
• 信息安全 • 上一篇
董业1,2,侯炜1,2,陈小军1,曾帅1
Dong Ye1,2, Hou Wei1,2, Chen Xiaojun1, Zeng Shuai1
摘要: 近年来,联邦学习已经成为一种新兴的协作式机器学习方法.在联邦学习中,分布式用户可以仅通过共享梯度来训练各种模型.但是一些研究表明梯度也会泄露用户的隐私信息,而安全多方计算被认为是一种保护隐私安全的有效工具.另一方面,一些研究人员提出了Top-K梯度选择算法,以减少用户之间同步梯度的通信开销.但是,目前很少有工作可以平衡这2个领域的优势.将秘密共享与Top-K梯度选择相结合,设计了高效且安全的联邦学习协议,以便在保证用户隐私和数据安全的同时,减少通信开销,并提高模型训练效率.此外,提出了一种高效的方法来构造消息验证码,以验证服务器返回的聚合结果的有效性,其中,验证码引入的通信开销与梯度的数量无关.实验结果表明:相比于同样条件下的明文训练,该文的安全技术在通信和计算方面都会引入少量额外的开销,但该方案取得了和明文训练同一水平的模型准确率.
中图分类号: