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Abstract　 Machinelearning hasachieved greatsuccessin computer vision,naturallanguage
processingandotherfieldsinthepastfewyears．Inrecentyears,machinelearningtechnologyhas
graduallybecomeoneofthe mainstream technologiesinthefieldofcyberＧsecurity,and many
intrusiondetectiontechnologiesbasedonmachinelearninghaveemergedinthefieldoftheindustrial
Internet．Aimingatlanding machinelearningＧbasedintrusiondetectiontechnologyintothereal
industrialsystemnetwork,weconductaninＧdepthanalysisofrelatedworkinthefield．Wesummarize
theuniquenessofmachinelearningＧbasedintrusiondetectionintheindustrialInternetandextract
threeresearchpointsfromtheworkflowofintrusiondetectioninindustrialcontrolsystem (ICS)．
Basedontheresearchpointsthatdifferentresearchesfocuson,wedividemachinelearningＧbased
intrusiondetectionsystem (IDS)inICSintothreecategories:algorithmdesignＧorientedresearches,

applicationchallengesandlimitationsＧorientedresearches,andICSattackscenarioＧorientedresearches．
Thetaxonomyshowsthesignificanceofdifferentresearchworkaswellasexposestheproblems
existingintheresearchfieldatpresent．Itcanprovideagoodresearchdirectionandreferencefor
futurework．Intheend,weproposetwopromisingresearchdirectionsinthisfieldbasedonthelatest
developmentsinmachinelearning．
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摘　要　过去几年中,机器学习算法在计算机视觉、自然语言处理等领域取得了巨大成功．近年来,工业

互联网安全领域也涌现出许多基于机器学习技术的入侵检测工作．从工业互联网的自身特性出发,对目

前该领域的相关工作进行了深入分析,总结了工业互联网入侵检测技术研究的独特性,并基于该领域中

存在的３个主要研究问题提出了新的分类方法,将目前基于机器学习的互联网入侵检测技术分为面向

算法设计的研究工作、面向应用限制和挑战的研究工作,以及面向不同ICS攻击场景的研究工作．该分

类方法充分展现了不同研究工作的意义以及该领域目前研究工作中存在的问题,为未来的研究工作提

供了很好的方向和借鉴．最后基于目前机器学习领域的最新进展,为该领域未来的发展提出了２个研究

方向．
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　　工业互联网是传统工业控制系统(industrial
controlsystem,ICS)和互联网技术的结合．互联网

技术在为工控系统提供便利的同时,也打破了传统

的工业信息安全防护模式,不可避免地会将互联网

自身固有的网络安全风险引入到工业互联网中．与
传统互联网相比,工业互联网的特征更加复杂,涉及

设备种类繁多,网点更加密集,协议相对脆弱,导致

安全风险也就更多．
近年来,工业互联网安全事件频发,不仅给整个

工业行业造成了严重的经济损失,而且造成了极其

恶劣的社会影响．比如２０１０年破坏伊朗核设施的“震
网”病毒、２０１４年攻陷乌克兰电网的 BlackEnergy２、

２０１７年攻击沙特天然气系统的 TRITION 恶意软

件、２０２１年５月针对美国燃油运输管道商的勒索病

毒攻击以及近年来频发的勒索软件攻击等．
目前工业互联网面临的安全挑战主要体现在

２个方面:脆弱的终端设备和复杂的网络．
终端设备一方面漏洞频发．根据国家信息安全

漏洞共享平台(ChinaNationalVulnerabilityDatabase,

CNVD)最新统计,截至２０２１年１０月,与工业控制

系统相关的漏洞高达３１００个,其中高危漏洞１４３２
个,中危漏洞１４９３个,低危漏洞１７５个．另一方面由

于工业互联网涉及设备广泛,安全检测和监管手段

不到位,导致漏洞难以及时修复．
网络方面,互联网技术的引入使得网络边界更

加模糊,以隔离为主的防护体系难以满足现在的互

联需求,无线网络的接入更是打破了原有系统的专

网通信,追求效率的通信协议缺少相应的安全认证,
这些都增加了网络被攻击者入侵的安全风险．

为了缓解安全风险,保障ICS设备和信息安

全,目前工业互联网的防护工作主要利用系统的流

量和设备监控数据来分析系统是否出现异常．入侵

(异常)检测系统(intrusiondetectionsystem,IDS)
作为工业互联网的一个安全组件,可以实时监视网

络传输数据,识别安全事件,及时发现安全威胁和攻

击者．传统互联网环境中,入侵检测技术一直是安全

从业人员研究的热点,是保障网络安全的重要手段,
但是随着黑客攻击数量的增多,传统基于规则的检

测方法难以发挥作用．另外基于规则的检测方法需

要专业安全人员对数据进行分析,提取特征,且难以

应对未知的安全风险．随着机器学习技术在其他领

域的应用和发展,比如应用于图像[１Ｇ５]和文本[６Ｇ１０]

等,越来越多的入侵检测方案[１１]开始采用机器学习

技术,由于机器学习技术具备出色的泛化能力和运

算性能,以及处理大规模的数据的能力,甚至具备一

定的检测未知安全风险的能力,基于机器学习的入

侵检测技术成为当前主流的检测方案．
工业互联网领域借鉴传统互联网中的入侵检测

技术,使得机器学习技术也开始广泛应用于工业互

联网中的入侵检测系统．尽管工业互联网与传统互

联网有很多相同点,使得传统互联网中的安全技术

可以移植到工业互联网中,但是工业互联网也存在

自己的特点．例如工业互联网中采用的是完全不同

的网络协议,如 Modbus,Profinet等;工业控制系统

产生数据的维数高、关联性强[１２];相比传统互联网

系统,工业控制系统具有高实时性、资源受限、更新

困难等特性[１３]．这些特点都增加了工业控制系统入

侵检测技术的难度,研究工作应该针对工业控制系

统的这些特点,提出相应的算法和模型．
近年来,随着５G技术的提出和普及,工业互联

网安全越来越受到国家的重视,学术界涌现出了许

多不同的基于机器学习的入侵检测技术,这些研究

工作都具有不同侧重点,使用的机器学习算法也各

有不同．鉴于此,本文调研了近１０年机器学习技术
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在工业互联网入侵检测中应用的相关研究工作．在
统计中发现,２０１８年以来的相关研究,相比之前的

研究工作,数量和质量都有很大的提升,这与机器学

习技术近几年的发展有很大关系,但同时也暴露出

很多问题．本文针对这些工作进行了深入探讨和分

析,总结了工业互联网入侵检测技术区别于普通互

联网入侵检测技术的独特性,并从一个新的角度对

这些工作进行了分类、分析和总结,以便于未来针对

工业互联网安全进行更加深入的研究．
本文的主要贡献包括３个方面:
１)本文调研近１０年来工业互联网领域中基于

机器学习技术的入侵检测工作,在本文的统计中,随
着机器学习的发展,不仅该领域的相关工作数量在

持续增加,模型的效果也在不断提升,由原先对机器

学习算法的简单应用,到现在海量数据处理速度大

幅提升、检测的攻击类型更加丰富,从一开始追求分

类效果,到现在研究工作人员更加注重模型的落地

和实用性,说明该领域经历了长足的发展,慢慢从单

一到全面,已经逐渐成熟和完善．基于这些工作,本
文从工业互联网自身的特点出发,对整个研究流程

做了概括,总结出了３个主要研究点,并对每个研究

点的意义做了分析和阐述．
２)本文总结了工业互联网场景和传统互联网

场景之间的差异,这些差异使得基于机器学习的入

侵检测工作不能使用模型加数据的简单研究模式,
而是要充分理解这些差异带来的不同．除了要考虑

算法模型外,还要考虑ICS场景的要求和限制,比
如实时性要求、计算资源限制等．由于不同的ICS场

景面临的攻击方式存在差异,检测模型必须做出相

应的适应性变化,所以工业互联网领域中基于机器

学习的入侵检测方法需要关注模型设计、应用限制

和挑战、独特的ICS场景３个方向．我们根据这３个

方向将目前的研究工作分成了面向算法设计、面向

应用挑战和限制,以及面向ICS场景３个类别．该分

类方法不仅能够体现传统互联网中入侵检测工作和

工业互联网中入侵检测工作的不同,同时也能很好

地总结目前研究工作的重心,揭露工业互联网入侵

检测研究工作的研究方向和存在的问题,并为以后

的研究工作提供明确的方向．
３)基于对本领域文献的深入调研,本文总结了

机器学习算法在应用到工业互联网时的问题和不足,
并针对这些问题做了深入分析,最后基于机器学习

应用领域的最新进展工作,展望了基于机器学习的

工业互联网入侵检测工作未来的发展方向,详细阐述

了不同方向可能存在的研究点以及研究的重要性．

１　基础知识

１．１　工业控制系统(ICS)介绍

工业控制系统是一类工业生产使用的控制系统

的总称,它包含监视控制与数据采集控制系统(supＧ
ervisorycontrolanddataacquisition,SCADA)、分
布式控制系统和其他常见于工业部门与关键基础设

施的小型控制系统等[１４]．
１．１．１　工业控制系统架构

常见的工业控制系统一般由３层网络组成,如
图１所示[１５],从上到下分别是企业网络、控制网络

和现场网络,不同网络对应不同的功能．企业网络主

要包括 ERP(enterpriseresourceplanning)系统功

能单元,用于使管理者掌握和了解整个系统的运行状

况和设备状态变化,实现对工艺的过程监视与控制．

Fig．１　Structureofindustrialcontrolsystem
图１　工业控制系统框架

控制网络主要负责监视底层现场网络的行为,
负责现场网络和企业网络之间的信息传递和存储．
该层主要包括SCADA和数据服务器等设备,SCADA
可以对现场运行的设备进行监视和控制,实现对现

场设备进行数据采集、设备控制、测量、信号报警以

及参数调节等功能．
现场网络主要包括程序逻辑控制器(programmＧ

ablelogiccontroller,PLC)、远程终端单元(remote
terminalunit,RTU)等现场设备,用于对生产过程

的设备进行感知和操作．HMI为人机界面,用于系统
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和用户之间进行信息交互,向现场设备发送控制命

令和查询请求．
１．１．２　工业互联网协议

工业控制通信协议是为了提高效率和可靠性而

设计的,为了满足ICS的经济效益和运作效率,大
多数的工业控制通信协议很少考虑安全性,而且大

部分协议都是私有协议．本节主要介绍了３种常用

的开放的工业控制协议:Modbus协议、ICCP(InterＧ
controlCenter Communication Protocol),以 及

DNP３(DistributedNetworkProtocol)．这些协议由

于缺少认证加密等安全措施,本身就存在着大量的

安全隐患,很容易受到攻击者的攻击和利用．
Modbus[１６]是历史最悠久的工业控制协议,是

工业电子设备之间常用的连接方式．由于 Modbus
公开发表且无版权要求,还易于部署维护,所以是目

前应用场景最广泛的工业控制协议．
Modbus是一个 OSI模型中应用层的协议,它

可以实现设备间高效通信．通过此协议,PLC,RTU
和SCADA可以通信．它描述了控制器请求访问其

他设备的过程,以及如何回应来自其他设备的请求、
怎样侦测错误记录．它制定了通信数据的格式和内

容的公共格式．Modbus有２种通信传输方式,分别

是 ASCII模式和 RTU 模式．ASCII模式在实际应

用中相对较少,RTU模式为常用模式．Modbus在设

计之初并没有考虑安全问题,缺少很多安全措施,比
如认证、加密、验证等,所以很容易遭到恶意攻击．

DNP３(DistributedNetworkProtocol)[１７]是一

种应用于自动化组件之间的通信协议,常见于电力、
水处理等行业．SCADA 可以使用 DNP 协议与主

站、RTU、IED(intelligentelectronicdevice)进行通

信．DNP协议提供了对数据的分片、重组、数据校

验、链路控制、优先级等服务,使用大量CRC校验来

保证数据准确性．DNP协议同时还具有对抗恶劣环

境中产生的电磁干扰的能力,但是无法有效抵抗黑

客的攻击和破坏,使得该协议漏洞频出,同样也缺乏

授权认证和加密等安全措施,大大增加了受到黑客

攻击的风险．
ICCP (InterＧcontrol Center Communication

Protocol)[１８]协议最早是美国电力科学院于２０世纪

９０年代提出的,是目前最为流行的电力系统计算机

通信的应用层规约之一．它是采用 MMS服务和协

议的一个标准化的 MMS应用．其通信过程如图２
所示,它采用客户端∕服务器的通信方式,该方式的

优点是可以提高通信效率和数据传输实时性,并且

节省通信系统的开销．它的双向表和存取控制特性

保证了一定的安全性,但是也十分有限,同样缺少认

证和加密,容易遭受会话劫持等攻击．

Fig．２　ICCPprotocolframeworkdiagram
图２　ICCP协议框架图

１．２　工业互联网入侵检测技术的独特性

工业互联网由于历史存留问题,在建设之初就

未考虑安全措施,而将安全寄托于其封闭性上,随着

互联网技术的普及,这些安全问题也随之暴露出来．
其独特性主要体现在３方面:

１)工业互联网的独特性体现在其协议的独特

性．工业互联网采用与普通IT 网络不同的通信协

议,这些协议受限于工业控制系统对实时性的要求,
首要目标是提高通信效率,并非安全性,因此绝大多

数协议都缺乏安全措施,导致工业互联网很容易遭

受黑客攻击．
２)工业互联网的独特性体现在其场景的多样

性上．不同种类和规模的工业场景使用的设备和传

感器的数量、种类都有所不同,其网络架构也存在较

大差异,导致针对某一工业场景的攻击也呈现出不

同的形式,即使相同攻击方式在不同工业场景也会

产生不同的影响,而普通IT 网络的场景都普遍存

在相似性,攻击行为、攻击结果也都是相似的．
３)工业互联网的独特性体现在其限制和要求

上,文献[１３]总结了工业互联网中独特的限制和要

求,比如数据噪声多、高实时性要求、资源受限、难以

重启和更新等．这些限制和要求都是普通互联网场

景所不具备的．
工业互联网的独特性导致其场景下入侵检测技

术也需要根据这些特性来进行研究,协议安全性差

会导致遭受的攻击数量增加,从而要求检测模型处

理性能要高,能够对攻击快速进行响应．场景的差异

性使得检测技术要依托场景来研究,通过对ICS场

景,以及该场景下存在的攻击类型和不同攻击产生
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的不同影响进行针对性研究,才能设计出检测性能

出色的检测模型．而工业场景本身存在的限制和要

求也导致检测技术面临诸多限制和挑战,比如高实

时性要求限制检测模型的计算复杂度,噪声数据使

得对检测模型的鲁棒性要求更高．
１．３　经典机器学习算法

随着机器学习算法在其他领域的不断成功,安
全领域也开始结合机器学习模型实现智能化检测来

提高效率,以下主要介绍安全领域常用的一些机器

学习算法．
１．３．１　聚类算法(KＧmeans[１９])

聚类算法是一种无监督学习方法,它将数据按

照被明确定义的相似性划分成一定数量的集群,使
同集群内部的数据之间的相似性大于不同集群的数

据之间的相似性．在聚类算法中,离群值一般被认为

是远离任何集群的点,作为聚类的副产物而被检测

出来．
KＧmeans算法是入侵检测最常用的聚类算法,

也是最为经典的基于划分的聚类方法．它的中心思

想是,以空间中k 个点为中心进行聚类,通过迭代

的方法,逐次更新各聚类中心的值,直至得到最好的

聚类结果．
１．３．２　OCSVM(OneＧClassSVM)

OCSVM[２０]是入侵检测最常用的算法,在很难

获取到离群点数据时,使用 OCSVM 对正常样本进

行训练,可以将正常样本与离群点区分出来,类似于

深度学习中的自编码器．
OCSVM 的优化目标为

min
ω∈F,ξ∈RR′,ρ∈RR

１
２ ω ２＋

１
vl∑iξi－ρ,

s．t．(ω􀅰φ(xi))≥ρ－ξi,ξi ≥０．
(１)

　　具体含义参见文献[２０]．
１．３．３　深度神经网络

深度神经网络(deepneuralnetwork,DNN)[２１]

是一种人工神经网络,其结构如图３所示,在输入层

和输出层之间具有多个层,具有对复杂数据的强大

拟合能力,因此被广泛应用于包括离群点检测在内

的多个领域．
１．３．４　卷积神经网络

卷积神经网络(convolutionalneuralnetwork,

CNN)[２２]是一种前馈神经网络,由一个或多个卷积层

和最后的全连接层组成,在层之间也包含了池化层．
其中卷积层被用于提取数据的局部特征,池化

层被用于数据降维,而全连接层与传统的神经网络

Fig．３　StructureofDNN
图３　常见的 DNN结构

一致．CNN在图像领域具有极为出色的表现．
１．３．５　长短时记忆网络

长短时记 忆 网 络 (longshortＧterm memory,

LSTM)[２３]是一种特殊的循环神经网络(recurrent
neuralnetwork,RNN),不但继承了 RNN 处理序

列数据的能力,而且解决了长序列训练过程中的梯

度爆炸和梯度消失问题．
LSTM 在RNN的基础上,引入了“门”的机制,

通过输入门、遗忘门和输出门,解决了长期依赖问

题,使神经网络具有记忆距离较远的信息的能力．
１．３．６　深度 Q网络

深度 Q 网络(deepQnetwork,DQN)[２４]是一

种深度强化学习方法,融合了深度神经网络与传统

的 QＧLearning强化学习方法．其核心思想是对 QＧ
Learning中的Q 值进行近似表示:

Q(s,a)≈f(s,a,w), (２)
其中s表示状态,a 表示行为,w 表示近似函数的

参数．
DQN的f(􀅰)是深度神经网络,使用传统的 QＧ

Learning算法估计的Q 值为标签训练神经网络,来
得到Q 值的拟合,这样能够解决状态和行为数量过

多的问题．
１．３．７　自编码器

自编码器(autoencoder,AE)[２５]是一类在半监

督学习和非监督学习中使用的人工神经网络,由一

个编 码 器 和 一 个 解 码 器 构 成,常 被 应 用 于 降 维

(dimensionalityreduction)和异常值检测(anomaly
detection)．
１．４　常用数据集

通过大量的文献调研工作,本文总结出了ICS
IDS评估常用的数据集,如表１所示:
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Table１　ICSIDSDatasets
表１　工控系统的入侵检测系统数据集

数据集 良性 恶意 协议

WADI[２６] １６２８２４ ９９７７ Modbus

SWaT[２７] Modbus

天然气管道数据集[２８] ２１４５８０ ６００４８ Modbus

EPIC[２９] Modbus

SCADA网络数据集[３０] ８８１９９１ ３００６３ Modbus

UNSWＧNB１５[３１] ９３０００ １６４６７３ IT

NSLＧKDD[３２] ９０５０３ ８３２０６ IT

１．４．１　非公开数据集

研究人员从搭建的试验台仿真模拟得到数据或

从真实的ICS系统中收集数据,用来评估提出的入

侵检测模型的效果．
１．４．２　WADI数据集[２６]

WADI(waterdistribution)数据集是一个配水

试验台的数据集,是通过正常运行１４d和异常运行

２d产生的(一共进行了１５次攻击),数据来自于

１２３个传感器和执行器,WADI常用来对配水系统

网络进行安全分析和评估检测．
１．４．３　SWaT数据集[２７]

SWaT(securewatertreatment)是一个水处理

系统试验台的数据集,通过正常运行７d和在攻击

场景下运行４d,从５１个传感器和执行器收集得到,
该数据集包含与工厂和水处理过程相关的物理属

性,以及测试台上的网络流量,一共包含９４６７２２个

样本．
１．４．４　天然气管道数据集[２８]

天然气管道数据集包含天然气管道系统试验台

SCADA 系统的网络流量和日志数据,包括正常运

行的数据和遭受真实攻击的数据(如表２所示,包含

Table２　AttackTypesandDescriptioninGasPipeline

Dataset[２８]

表２　天然气管道数据集中包含的攻击类型及其描述[２８]

攻击类型 描述

NMRI 注入随机的响应包

CMRI 隐藏控制进程的真实状态

MSCI 注入恶意状态命令

MPCI 注入恶意参数命令

MFCI 注入恶意函数代码命令

DoS 拒绝服务攻击

Recon 收集网络信息、识别设备特征

７种 类 型 攻 击),该 数 据 集 使 用 ARFF(attribute
relationshipfileformat)格式存储(包含１９个特征)．
１．４．５　EPIC数据集[２９]

EPIC(electricpowerandintelligentcontrol)数
据集是通过操作 EPIC试验台在每个场景(共８个

场景)下运行３０min产生的数据,数据包含传感器

数据、执行器状态和网络流量数据．
１．４．６　SCADA 网络数据集[３０]

SCADA数据集生成自一个基于SCADA 的小

型电力网络的沙箱,通过真实的攻击工具来模拟恶

意流量,数据只包含网络流量数据,该数据可以用来

评估SCADA系统的入侵检测技术．
１．５　评估指标

为了对基于机器学习算法的ICSIDS进行有效

评估,不仅需要有效可行的实验评估方法,还需要有

衡量模型泛化能力的评价标准,也就是评估指标,我
们总结了在ICSIDS的任务需求下常用来判别方法

“好坏”的评估指标．这些指标可以分为２类:分类指

标和应用指标．
１．５．１　分类指标

分类指标是由表３中的评估矩阵计算得到．

Table３　EvaluationMatrix
表３　评估矩阵

真实情况
预测结果

正例(Positive) 反例(Negative)

正例(True) TP FN

反例(False) FP TN

１)准确率(accuracy,ACC)是最常见的评价指

标,指正确预测的数量占总样本的比例．值越大,性
能越好,其计算方法为

ACC＝
TP＋TN

TP＋TN＋FP＋FN． (３)

２)精确度(precision,P)反映分类器或者模型

正确预测正样本精度的能力,即预测的正样本中有

多少是真实的正样本．值越大,性能越好,计算为

P＝
TP

TP＋FP． (４)

３)召回率(recall,R)反映分类器或者模型正

确预测正样本全度的能力,即正样本被预测为正样

本占总的正样本的比例．值越大,性能越好,计算为

R＝
TP

TP＋FN． (５)

４)综合评价指标F１(FＧMeasure)是精确度和
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召回率的加权调和平均,用来综合考虑召回率和精

确度．值越大,性能越好,计算为

F１＝
２×P×R
P＋R ． (６)

５)误报率(falsepositiverate,FPR)是将正常

行为误判断为异常行为．由于ICS的高实时性,如果

因为误报导致系统停止工作,会带来系统设备和资

源的巨大损失,因此在ICSIDS中,在提高其他指标

的同时也要保证误报率要尽可能低,甚至可以牺牲准

确率,也不允许出现误报．值越小,性能越好,计算为

FPR＝
FP

FP＋TN． (７)

６)错误率(error,ERR)与准确率相反,用来描

述分类器错分的比例．值越小,性能越好,计算为

ERR＝１－ACC＝
FP＋FN

TP＋TN＋FP＋FN．(８)

７)漏报率(falsenegativerate,FNR)反映分

类器或者模型正确预测负样本纯度的能力,即正样

本被预测为负样本占总的正样本的比例．值越小,性
能越好,计算为

FNR＝
FN

TP＋FN． (９)

８)ROC 曲线是以TPR 为纵轴、FPR 为横轴

形成的曲线．ROC 曲线描述的其实是分类器性能随

着分类器阈值的变化而变化的过程．
９)AUC 值为ROC 曲线向下覆盖的面积值,其

值越大,性能越好,是衡量机器学习分类器最常用的

性能指标．
１０)冲突因子指数(conflictindexfactor,CiF)

由GauthamaRaman等人[３３]提出,作为检测准确率

和误报率的平衡指标,充分考虑了这２个指标对模

型性能的影响．CiF 可以更准确地评估检测性能．
１．５．２　基于ICS独特性的应用指标

基于机器学习算法的入侵检测系统的常用评估

指标是分类指标,在ICS系统中,最重要的２个指标

是检测率和误报率．与IT网络中的入侵检测系统不

同,ICS领域中的检测系统需要面临系统中存在的

种种限制,比如数据维度高且噪声多、计算资源匮

乏,以及对实时性要求高等,所以研究工作不仅要考

虑模型的检测性能,更重要的是如何在保证检测指

标不下降的同时高效地解决这些限制．在我们调研

的大部分工作中,只追求高准确率和低误报率工作

占比很大,但是仅凭这２个指标无法全面衡量复杂

的工业控制系统的入侵检测系统在真正应用时的性

能,所以很多研究工作使用了新的评估指标．

１)检测时延[３４]

检测延迟(timetakenfordetection,TTD)是
指在受到攻击之后,检测到系统中异常所用的时间．
对ICS的成功攻击可能会导致灾难性的故障,对国

家经济甚至人类生命安全产生重大影响．因此,有必

要尽早检测到由于攻击而产生的异常．检测延迟越

低,性能越好．
２)系统负载[３５]

系统负载包括系统功耗、通信开销和处理器负

载等指标．由于ICS中各种资源相对有限,所以IDS
产生的负载要尽可能小,不能影响正常的系统运行．

３)鲁棒性[３６]

鲁棒性是指模型的抗干扰能力和能够适应复杂

环境的能力．由于相对于实验室环境,真实的工业控

制系统产生的数据包含很多噪声数据,所以模型需

要具有过滤噪声或抵抗系统中噪声数据的能力．
４)计算复杂度

由于工业控制系统计算资源相对有限,所以要

求检测模型的计算复杂度应尽可能低,减少对系统

其他功能的影响．

２　分类方法

本节我们介绍了不同的基于机器学习算法的

ICSIDS的分类方法．
２．１　常见的分类方法

Fig．４　AtaxonomyforICSIDSbyref[３７]

图４　文献[３７]的ICSIDS分类方法

如图４所示,Mitchell等人[３７]和文献[３８]对ICS
IDS技术从检测技术和数据源２个角度进行了划

分．根据检测技术的不同,ICSIDS技术又可以分为

基于知识的入侵检测和基于行为的入侵检测．基于

知识的入侵检测技术通过特征匹配的方式,将检测

到的数据与已知的攻击行为特征模式进行匹配来发

现恶意行为．虽然这种检测技术误报率很低,但是这

种行为只能检测到已知的攻击行为,无法检测未知
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攻击．基于行为的入侵检测通过监测系统中的各种

行为,与正常操作行为进行比较来发现不正常的行

为,该技术检测效率很高,但是误报也很高,而且无

法区分具体的攻击行为．这部分工作又有一部分需

要通过基于行为规范的检测方法来对系统中的攻击

进行更加精准的检测．
根据使用的数据来源的不同,ICSIDS又可以

分为基于网络流量的检测和基于主机的检测．基于

网络流量的检测通过审计整个系统网络流量来发现

网络异常现象．该方法的优势是不需要审计单个节

点的网络流量和日志．但是由于无法检测每个节点

的流量,合理安排检测点来反映整个系统的网络活

动变得十分具有挑战性．基于主机的入侵检测主要

监控系统设置、配置文件、应用程序和敏感文件,以
发现系统的异常情况．

该分类方法只从数据和技术层面做了分类,没
有考虑工业互联网自身具有的特性．该分类方式采

用的还是传统互联网环境中入侵检测系统的分类方

式．鉴于此,杨安等人[１３]和 Hu等人[３９]基于对大量

ICSIDS文献的分析和理解,考虑ICS本身的特点,
从检测对象的角度出发提出了新的分类方法．根据

ICS的特点,将ICS技术划分为三大类,分别是基

于流量的检测、基于协议的检测和基于设备状态的

检测．
基于流量的IDS依据ICS不同的安全区域流

量特征,针对内部流量和外部流量,在不解析具体协

议格式的情况下,发现异常流量．不同于传统的基于

流量的检测方法,ICS环境中设备所处的位置、功能

相对固定,导致流量模式和流量特征比较稳定,所以

基于流量的检测适用于ICS环境,可精确检测到系

统中的攻击行为和异常流量．基于协议的IDS根据

工业控制协议规范,采用协议格式和状态分析技术,
对报文中的格式和协议状态进行检测,发现异常行

为．基于设备状态的IDS根据业务逻辑和设备操作

规范,通过定义正常的状态和异常的状态,根据状态

转移趋势和监控操作序列等方法检测入侵行为．因
为ICS存在大量的物理设备,而设备的状态基本上

是稳定的,所以当系统存在恶意入侵时,通过检测设

备状态的变化很容易发现系统中的异常,这也是不

同于传统互联网环境的检测方式．
当把机器学习技术引入到工业互联网入侵检测

研究中之后,工作的重点和方法都发生了改变,传统

的分类方法不再适用．基于此,Wang等人[４０]提出了

新的分类方法:基于数据的方法和基于工业互联网

规范的方法,如图５所示．基于数据的方法是指将机

器学习算法直接用在工业互联网数据集上,根据数

据的不同又可细分为物理层数据和网络流数据．基
于工业互联网规范的方法根据工业互联网的特点来

区分正常和异常行为,根据使用的规范不同可以分

为基于协议规范的方法、基于物理层规范的方法和

基于混合规范的方法．

Fig．５　AtaxonomyforICSIDSbyref[４０]
图５　文献[４０]的分类方法

类似地,GauthamaRaman等人[４１]提出了以设

计为中心和以数据为中心的方法．虽然这些方法都

能很好地总结该领域的相关工作,但是这些分类方

法专注在检测技术和数据上,视角过于局限,无法看

到整个领域的发展状况,不能给以后的研究人员一

个很明确的研究方向．基于此,我们需要跳出检测技

术和数据的视角,从一个更加高的视角去看目前的

工作,提出新的分类方法．
２．２　基于研究问题的分类方法

为了更好地对工作进行分类,我们首先对基于

机器学习算法的工业互联网入侵检测技术研究过程

做了总结和凝练．如图６所示,基于机器学习的入侵

检测的研究问题如图６中最右侧部分所示,通常只

需要关注数据预处理、特征的选择和提取,以及机器

学习模型的选择３个问题．而图６中最左侧部分则

是针对ICS攻击场景的研究问题,针对该问题的研

究关注的是不同场景的架构、攻击路径以及数据特

征之间的差异．而将基于机器学习的入侵检测技术

应用到不同的工业互联网场景时,二者交叉就会产

生图６中间部分所示的研究问题———如何解决应用

时的限制和挑战的问题．根据研究工作中重点关注

的研究问题的不同,可以分为３个研究点:机器学习

模型的设计和选取、应用时限制和挑战的克服,以及

针对不同ICS攻击场景的研究．我们的分类方法依

据这３个研究点,将目前的研究工作分为面向算法

设计、面向应用限制和挑战和面向特定ICS攻击场

景３个类别．
面向算法设计的研究工作专注于算法的使用,

创新使用机器学习算法解决检测过程中存在的问

题．该类别的研究工作将ICSIDS看作一般的IDS,
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Fig．６　OverallarchitectureofmachinelearningbasedICSIDS
图６　基于机器学习算法的ICSIDS整体架构

不会考虑ICS自身场景存在的应用限制和要求,比
如速度、性能以及数据特点等,也不会考虑不同攻击

场景的特点,如传感器和执行器的数量、ICS的整体

架构以及数据的采集位置等．该类别的方法一般以

提高准确性、召回率、F１等通用的分类指标为主要

目标．
面向应用限制和挑战的研究工作专注于将现有

基于机器学习的入侵检测技术合理应用到系统中

去,克服系统中的挑战和限制．比如ICS是一个具有

高实时性的系统,一旦出现延迟就会导致突发情况,
所以要求入侵检测系统计算复杂度低,消耗的计算

资源要少,否则无论模型的准确率多高,都无法真正

应用到真实的ICS当中．
攻击者在对ICS设施实施攻击时,往往会根据

不同场景选择不同的攻击方式,比如面对智能电网

系统时,常用的攻击方式就是虚假数据注入攻击．而
不同攻击方式会对系统带来不同的影响,所以面向

不同ICS攻击场景的研究专注发掘这些不同的攻

击方式和攻击场景带来的不同特征,从而选择合适

的方法进行检测．
３个研究点是相辅相成的．面向算法的研究工

作为其他工作提供更好的检测算法;面向应用的研

究工作有利于其他工作落地到真实的系统中;面向

ICS攻击场景的工作,更是为其他工作提供了重要

的信息．研究人员通过确定自己的研究重心,可以更

加明确自己的研究目标,让工作更加有针对性,这有

利于整个研究领域的进步．
首先,与其他分类方法相比,本文提出的分类方

法涵盖了工业控制系统入侵检测工作需要关注的３
个重要问题,即检测模型的选择、检测模型在应用过

程中所面临的限制和挑战的解决方法,以及针对不

同工业控制系统攻击场景的入侵检测问题．目前其

他分类方法主要聚焦在这些研究工作所使用的检测

模型和数据上,而忽略了其他个重要的问题．其次,
该分类方法充分体现了工业互联网入侵检测工作的

特点,而其他分类方法的分类思路同普通互联网入

侵检测工作分类思路是类似的．最后,该分类方法可

以充分暴露目前研究工作存在的问题．比如通过该

分类方法,我们可以看到,因为目前大部分工作都聚

焦在新模型和新方法的设计上,模型的实验性能已

经完全可以满足ICS的需求,而实际应用性能却不

尽如人意,所以针对工业互联网场景及其限制的研

究已经成为该研究领域的瓶颈．而其他分类方法很

难发现该研究领域整体存在的问题,因此该分类方

法相比其他较为传统的分类方法更加适合针对工业

互联场景的入侵检测领域．
从图６看到,３个大研究点可以细分分为更小

的研究点,比如针对应用时的限制和挑战的研究,可
以具体到针对工业控制系统高实时性要求的研究工
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作、针对资源限制下的入侵检测研究工作等．接下来

我们将按照该分类方法对目前的研究工作进行介绍

和总结,发现目前工作中存在的问题并对未来的工

作进行展望．

３　面向算法设计的入侵检测工作

在ICS中,通信模式是相对稳定的,通常是在

重复相同的命令集合,这些规则模式可以被机器学

习算法利用,通过数据特征构建相应的模型来区分

正常行为和异常行为．面向算法设计的入侵检测相

关工作大致可分为３个部分:数据处理、模型设计和

实验评估．数据处理是指将公开数据集或者采集自

模拟系统的数据转化为合适的特征向量,这个过程

通常包括数据清洗、特征抽取和特征选择,选择合适

的特征,可以减少数据中的噪声,提高分类效果．模
型设计是指根据数据的特点选择或设计相应的分类

模型对数据进行分类,合适的模型能够合理地利用

数据中的信息,提高模型的性能．实验评估是为了证

明模型的有效性而进行的一系列实验,通过合适的

评估指标从各方面证明系统的性能．
３．１　传统机器学习算法

传统机器学习算法相比深度学习算法和强化学

习算法,参数相对较少,对数据集合的大小要求较

低,对计算资源的需求也小于后者,属于轻量级的算

法．但是需要有应用领域知识的人从数据中提取合

适的特征,传统机器学习模型算法的效果很大程度

上依赖选取的特征向量．
传统的机器学习算法可以简单分为有监督学习

和无监督学习,在目前很多工控系统入侵检测模型

中最常用的无监督学习是 OCSVM 算法[４２]和 KＧ
means聚类算法,由表１可知,工业控制系统的数据

都具有较明显的数据不平衡的特点,正常数据要远

大于异常数据,而 OCSVM 算法只需要一类数据就

可以进行训练,所以很多工作如文献[１２,４３Ｇ４６]都
围绕着 OCSVM 算法提出不同的入侵检测模型,

OCSVM 在入侵检测工作中可以看作是一种无监督

学习算法,它不需要通过标记数据进行训练,在达到

不错的检测效果的同时降低了检测的人工成本,但
是目前基于 OCSVM 的分类器存在较高的误报率,
而且无法检测到具体的攻击类型．

聚类算法是无监督学习最常用的算法,相比

OCSVM 算法,聚类算法可以检测多种攻击产生的

异常,算法性能高且相对简洁．文献[４７]探索了不同

的聚类算法,选择了最适合对系统物理过程中产生

的时间序列特征进行聚类的KＧmeans算法．聚类算

法非常依赖研究人员对数据的理解和特征向量的提

取,当数据中存在大量噪声时,聚类算法很难得到很

好的效果．
相比无监督学习算法,监督学习算法学习效率更

高,入侵检测中常用的监督学习方法有SVM３３,４８Ｇ５１]、
贝叶斯网络[５２Ｇ５３]、Markov[５４Ｇ５７]等．SVM 同 OCSVM
类似,都只能区分异常和正常数据,缺乏精确检测攻

击类型的能力,为此,文献[５８]提出了基于多分类的

SVM 入侵检测方法,通过采用多个SVM 模型结合

的方法来实现精确检测多种攻击类型的能力．文献

[５３]使用了基于贝叶斯网络的模型来预测网络攻击

对系统产生的影响,由于该方法没有考虑实际生产

生活中的设备磨损和网络延迟,所以很难在真实环

境中达到理想效果．Markov过程常用来描述设备状

态的变化,其算法的特点是可以发掘序列数据中的

规律和特征,从而对该序列进行预测和分类,利用

Markov算法善于处理序列数据的特点．文献[５６]提
出了基于隐 Markov算法(hidden Markovmodel,

HMM)的检测模型,该模型可以分为２个子系统:
头部子系统和数据子系统,这２个子系统分别用来

处理 Modbus协议中头部和数据段的序列数据,每
个子系统包含多个 HMM 分类器,当其中一个分类

器检测到结果为异常时,该模型就会向SCADA 系

统发出警报,并报告异常结果,这种决策机制虽然可

以提高检测率,但是会导致误报率上升．
３．２　神经网络学习算法

深度神经网络学习算法虽然结果更加精确,同
时减少了特征提取的工作量,但是这些模型十分复

杂和庞大,通常具有大量的参数,例如图像分类模型

Vgg１９[２]就具有百万级别的参数量,这些算法不仅

需要巨大的计算资源,而且要求数据集要足够大才

能取得不错的分类效果．
CNN是图像领域最常用的算法,通过卷积操作

可以大幅减少模型的参数量[５９Ｇ６２]．文献[６１]将数据

包序列作为输入,将数据流预处理成图像形式,通过

将数据流视为一幅图像来检测正常数据包序列之间

的共同特征,图像被交由 CNN 算法进行分类,进而

判断出异常流量．
不同的数据结构适用的神经网络算法也不同,

比如CNN常用于图像领域,而RNN及其变体LSTM
则擅长处理序列数据,如文本等．因此根据入侵检测
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工作中使用的特征,需要采用不同神经网络模型,将
流量包看作一种序列数据,很多工作开始使用RNN[６３]

和LSTM[６４Ｇ６８]来处理这些序列数据．文献[６４]同时

使用了基于签名的包检测方法和基于 LSTM 的时

间序列检测方法的２层检测模型,检测过程如图７
所示．从图７看到,先通过基于 Bloom Filter的检

测器检测出部分异常流量,再通过基于 LSTM 的

检测器检测出另一部分异常流量．但是该方法需要

大量的训练集来更新模型参数才能达到不错的检测

效果．

Fig．７　Frameworkofthedetectiontechnique

proposedinref[６４]

图７　文献[６４]中提到的检测技术整体框架

Fig．８　Architectureoftheautoencodermodel

inref[７０]

图８　文献[７０]中的自编码器结构

文献[６５]提出了一种基于相关信息熵和CNNＧ
BiLSTM 的入侵检测模型,利用相关信息熵进行特

征选择,减少特征的维度,然后再利用深度学习算法

分类,该模型在提高准确率的同时可减少一定的噪

声和计算量,但是研究人员没有对计算量这一指标

进行量化分析和讨论．
在我们的调研中,AE[６０,６９Ｇ７１]也是工业控制系统

入侵检测工作常用的算法之一．文献[７０]提出了基

于LSTMＧAutoencoder的检测模型,自编码器的结

构如图８所示,检测模型中的LSTM 算法用于检测

数据中的坏数据和缺失数据,剔除这些数据之后,再
用 AE模型去检测数据中是否存在异常行为．结合

岭回归分类器的检测结果和网络日志,该模型可以

定位异常事件产生的原因．
除了常见的神经网络算法,一些新型神经网络

算法也被研究人员应用在工业互联网的入侵检测工

作中．Demertzis等人[７２]提出了SOCCADF,它是一

种基于进化型脉冲神经网络(evolvingspikingneural
network,eSNN)的入侵检测方法,只需要使用正例

样本进行训练,具有检测异常行为的能力．He等人[７３]

提出基于 CDBN(conditionaldeepbeliefnetwork)
的方法实时检测智能电网系统中的虚假数据注入

(falsedatainjection,FDI)攻击,在模拟不同环境噪

声实验中,该方法展现出了不错的抗干扰能力．
３．３　强化学习算法

强化学习不要求预先给定任何数据,而是通过

接收环境对动作的奖励(反馈)获得学习信息并更新

模型参数,强化学习模型具有独立判断决策的能力．
文献 [７４]和文献 [７５]分别将 QＧlearning 和

DynaＧQ 应用到无线网络系统的欺骗检测攻击中,

DynaＧQ是 QＧLearning利用Dyna架构构建的拓展版

本,根据文献[７５]中的实验结果,相比于 QＧLearning,

DynaＧQ具有更好的实用性和更高的学习速度．
文献 [７６]将 深 度 学 习 算 法 近 端 策 略 优 化

(proximalpolicyoptimization２．０,PPO２)应用到

工业互联网入侵检测工作中,相比普通 DQN 和

DDQN(doubledeepQnetwork)算法,基于 PPO２
的检测模型的准确率、召回率、精确度及F１等指标

都有提升．

４　面向应用挑战和限制的入侵检测工作

由于ICS本身存在诸多限制,基于机器学习算

法的入侵检测技术在应用过程中会遇到很多限制和

挑战,所以面向应用阶段的研究工作都是从应用时

遇到的限制的角度出发,解决入侵检测技术在应用

到实际ICS中遇到的挑战和问题．
４．１　减少检测延迟

工业控制系统本身具有实时性高、难以暂停的特

点,不能因为检测的时间而导致系统停滞,所以检测

延迟是入侵检测技术应用的一个重要指标,文献[７７]
比较了基于统计的检测技术(CUSUM 和BadＧData)
和基于深度学习算法的检测技术(NoisePrint)的性

能,结果发现基于深度学习算法的检测技术可以检

测高级的攻击方式,但是其检测延迟在对实时性要

求较高的ICS场景是无法忍受的,相比于深度学习
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算法,统计算法对普通攻击检测率更高,而且具有很

低的检测延迟(不超过１０s)．文献[５４]在模型评估

时使用检测延迟这一指标来证明其模型具有很高的

实时性,可以满足真实ICS的需求,并提出将优化

模型对资源和时间的消耗作为未来工作的重点．
４．２　降低计算复杂度

虽然很多工作都在尝试使用机器学习算法解决

ICS中的入侵检测问题,但是大部分机器学习模型

都需要大量的计算资源,而无法实际应用到真实的

工业互联网场景中．传统降低计算复杂度的方法都

是通过降低特征维度的方式进行,如PCA 算法[６０]．
而文献[６６]提出了一种混合了机器学习和统计技术

的检测模型,该模型具有很好的检测准确率和较低

的计算复杂度,而且在真实的ICS中也可以有效检

测网络攻击、恶意操作以及网络异常等事件．
为了降低神经网络算法带来的计算开销,文献

[７８Ｇ８０]利用学习算法为正常的行为构造了一个模

糊逻辑规则库,使用聚类方法直接从网络流量中提

取模糊规则来描述不确定的事件和现象,这种方法

本质上还是基于规则的方法,对计算资源的要求很

低．文献[７９]采用 TYPEＧ２模糊逻辑,对输入数据进

行模糊化,并将触发强度改成了一个范围值,解决了

检测性能下降的问题．文献[８０]则是在文献[７９]的
基础上提出了动态调节检测阈值的方法,提高了检

测精度．
４．３　提高鲁棒性

在工业互联网场景中,由于设备更换、工作流程

修改会引起ICS的行为发生变化,导致检测的效果

下降,因此 Abdelaty等人[５９]提出了 AADS(adaptive
anomalydetectioninindustrialcontrolsystems),

AADS可以使用少量的数据样本和梯度更新适应

系统行为的新变化．Abdelaty等人通过对测试数据

加入噪声数据来验证AADS的鲁棒性,实验结果表明

在噪声数据中 AADS的F１值保持稳定．与 Abdelaty
等人思路类似,文献[６６]通过在训练时就考虑不同

条件下会产生的噪声和扰动,并将其加入到训练数

据中,提高模型的鲁棒性,也降低了模型误报率．
文献[８１]和文献[８２]考虑到控制器区域网络的

不确定性,引入物理层特征,但是物理层特征的缺点

是在不同环境中特征会发生变化,比如不同温度环

境．文献[８２]为了测试模型的稳定性,通过收集不同

温度和不同时间的数据来对模型进行测试,实验表

明之前的训练模型在不需要重新训练的情况下依旧

可以保持相似的性能,文献[８１]则是通过增量学习

和减量学习的方式,增加新的学习样本和减少过时

的样本来克服物理层的这种变化．
鲁棒性不仅体现在对抗噪声数据的能力方面,

而且对抗样本攻击的出现也对机器学习模型的鲁棒

性提出了新的要求．文献[６１,８３Ｇ８６]中充分考虑了

对抗样本攻击的影响,设计了相应的对抗攻击的实

验．文献[６０]提出基于一维CNN 和 AutoEncoder的

ICS异常检测机制,采用一维 CNN 和PCA 方法保

证了模型不会占用太多计算资源,该模型在 WADI,

BATADAL[８７]和SWaT这３个数据集上表现出了

出色的性能,而且检测时间也只有千分之一秒．为了

证明该轻量化模型具有抵抗对抗样本攻击的能力,
文献[６０]还进行了对抗攻击实验,假设攻击者可以

通过修改传感器的值来改变特征,可以通过梯度攻

击的方式来离线生成恶意样本,实验结果表明,在数

据噪声水平较高时,攻击可以绕过检测,但是无法实

现攻击效果,当数据噪声水平较低时,攻击无法成功

绕过检测,表明了该检测机制同时对对抗样本有很

好的鲁棒性．
４．４　适应高维复杂的数据特点

相比于普通互联网中的数据,工业互联网的数

据呈现出数据维度高,关联性强的特征．
文献 [１２]创 新 性 地 将 PU 学 习 (positiveＧ

unlabeledlearning)应用到入侵检测系统中,针对工

业系统数据维度高、关联性强的特征,通过PU 学习

的特征重要度计算方法进行特征选择,降低了特征

的维度,但是PU 学习对正例样本有更加严格的限

制,现实数据很难保证正例样本和无标签样本的分

布相同．
４．５　降低误报率

不仅检测延迟会影响工业控制系统的实时性,
而且频繁的误报也会影响系统的实时性,对系统造

成严重的后果．
为了减少误报,文献[４８]通过增加训练数据的

多样性来提高模型区分正常操作和攻击行为的能

力,该方法不仅可以检测未知的攻击,而且在实际应

用中也具有较低的延迟．在实际应用中,一旦误报产

生,还可通过切换到一个相同控制器来降低误报可

能带来的损失．不同于文献[４８]的方法,文献[５４]
通过综合分析多领域的知识,提出一种基于多模型

的检测方法,为了减少多模型检测方法的误报,通过

引入基于 HMM 的警报分类模型,进一步区分真实

５００１刘奇旭等:基于机器学习的工业互联网入侵检测综述



攻击和误报,具体过程如图９所示．图９中 CAD,

NAD和 AAD分别表示不同的检测模型,实验结果

表明,该方法有效减少了系统中产生的误报,并且拥

有较低的检测延迟．图９中λ 和p 的下角标f,a,n
分别表示误报(faultstate)、攻击 (attackstate)和
正常(normalstate)．

Fig．９　Detectionmodelproposedinref[５４]

图９　文献[５４]中的检测模型

５　面向特定ICS攻击场景的入侵检测工作

不同的ICS场景中,传感器和执行器的位置和

数量都是不同的,ICS的架构也有所不同,攻击者采

取的攻击手段也会有所差异,比如在智能电网场景

中虚假数据注入攻击和水处理系统中的虚假数据注

入攻击的攻击路径和攻击目标是完全不一样的,对
系统的影响也有很大区别,所以为了更有效地检测

到特定ICS场景下的入侵行为,检测系统收集数据

的节点和检测方法都应该是根据特定ICS场景而

设置的,入侵检测工作要深入了解不同的ICS攻击

场景,找到最优的探测节点来获取有效数据,结合机

器学习算法,提高检测性能．
文献[７３]针对智能电网系统中利用虚假数据注

入攻击来窃取电力的场景提出了基于深度信念网络

的检测方法．该工作对电网场景以及FDI攻击进行

了深入调查和研究,为了更好地模拟攻击者行为,该
工作对攻击者模型进行了假设,并构建了目标优化

模型来模拟攻击者的行为,采用状态向量评估器

(statevectorestimator,SVE)和深度信念网络模

型双层检测机制来检测该场景下的攻击行为,如图

１０所示,实时的测量数据首先经过SVE进行计算

评估．当计算结果超过阈值τ时,模型就会判断为遭

遇攻击;当小于阈值τ时,实时数据会传入已经训练

好的DLBI(deepＧlearningbasedidentification)模型

中进行分类,分类结果为１时判定为遭遇攻击,分类

结果为０则为正常行为．

Fig．１０　Detectionmodelproposedinref[７３]

图１０　文献[７３]的检测模型

语义攻击场景近年逐渐受到了关注,语义攻击是

需要攻击者对ICS中的协议、软件和硬件有深入了

解的一种攻击类型．文献[５５]针对一种特定类型语

义攻击(序列攻击)场景展开深入研究,该类型攻击

往往涉及序列事件,通过一系列合法的操作来破坏

系统设施．针对该特点,文献[５５]提出了基于离散时

间 Markov链(discreteＧtimeMarkovchains,DTMC)
的检测框架,从网络流量、日志以及进程变量的变化

中提取事件序列,构建 Markov状态转移过程,并通

过引入事件权重的方法,提高模型检测率的同时降低

了误报率．文献[８８]提出了攻击影响排名模型,采用
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影响持续的时间、与正常行为之间的差距和阈值差

３个指标来计算攻击方式对系统的影响程度,但是３
个指标并不是独立影响的,它们之间的互相影响降

低了最终评估结果的准确性．
文献[８９]对多种攻击场景进行了深入研究,比

如数据注入攻击、语义攻击等,从攻击原理出发,以
攻击点和攻击方式为特征,对攻击策略进行了形式

化描述,并对攻击产生的影响做了定量评估,最后通

过基于状态转移概率的图的检测方法证明了评估方

法的科学性和有效性．

Table４　ComparisonsofResearchonIntrusionDetectionofICSUsingMachineLearning
表４　基于机器学习的工业互联网入侵检测技术对比

来源 类别 机器学习算法 指标性能 数据或场景

文献[１２] 面向应用 OCSVMPU学习 误报率、准确率、召回率、精确度以及F１ WADI

文献[３３] 面向应用 SVM 准确率、检测率、误报率、稳定性 NSLＧKDD,UNSWＧNB

文献[４２] 面向算法 LightGBM 准确率、精确度、召回率以及F１ 天然气管道数据集

文献[４３] 面向算法 OCSVM 准确率 流量数据

文献[４４] 面向算法 OCSVM 准确率、精确度、召回率、误报率 非公开数据集

文献[４５] 面向算法 贝叶斯网络 准确率、精确度、召回率、F１ 天然气管道数据集

文献[４６] 面向算法 OCSVM 检测率 非公开数据集

文献[４７] 面向算法 KＧmeans RMSE,执行时间 流量数据

文献[４８] 面向应用 SVM 反应器压强变化 非公开数据集

文献[４９] 面向算法 SVM 检测率、RMSE SWaT

文献[５２] 面向算法 贝叶斯网络 精确度、运行时间 SWaT

文献[５４] 面向应用 HMM 检测率(召回率)、检测时间、误报率、准确率 非公开数据集

文献[５５] 面向场景 Markov算法 检测率、误报率 语义攻击

文献[５９] 面向应用 CNN 精确度、召回率、F１以及鲁棒性 SWaT

文献[６０] 面向应用 CNN,AE 精确度、召回率、F１、鲁棒性、检测时间 BATADAL,SWaT,WADI

文献[６１] 面向算法 CNN 准确率、精确度、召回率、F１ 非公开数据集

文献[６３] 面向算法 RNN 误报率 SWaT

文献[６４] 面向算法 LSTM 误报率、准确率、召回率、精确度以及F１ 天然气管道数据集

文献[６５] 面向算法 LSTM 准确率、误报率、漏报率 天然气管道数据集

文献[６６] 面向应用 LSTM RＧSquare、RMSE、检测时间、平均绝对比例误差(MAPE) 非公开数据集

文献[６９] 面向算法 AE 准确率、精确度、召回率、F１ BATADAL[７４]

文献[７０] 面向算法 AE 准确率、精确度、召回率、F１、RMSE 非公开数据集

文献[７２] 面向算法 eSNN 准确率、精确度、召回率、RMSE、F１以及 ROC 天然气管道数据集

文献[７３] 面向场景 CDBN 检测率、ROC 针对电网的FDI攻击

文献[７６] 面向算法 强化学习 准确率、精确度、召回率记忆F１ 天然气管道数据集

文献[７７] 面向应用 NoisePrint 精确度、检测延迟 非公开数据集

文献[７８] 面向应用 聚类 准确率、检测率、误报、处理时间 分公开数据

文献[８９] 面向场景 概率图算法 准确率、检测率、误报率、F１ 多种攻击场景

文献[９０] 面向算法 KＧmeans 准确率、召回率、准确度、误报率 UCI数据集

文献[９１] 面向场景 奇异谱分析 检测时间、检测率、误报率以及对系统的影响 隐蔽攻击场景

文献[９２] 面向应用 KNN 准确率、准确率、召回率、精确度、F１、灵敏度等 天然气管道数据集

文献[９３] 面向算法 PNN 准确率、检测率、误报率、F１ SWaT

文献[９４] 面向算法 SVM、随机森林 准确率、召回率、精确度、F１ 天然气管道数据集

文献[９５] 面向场景 偏度分析 计算时间和对系统的影响 隐蔽攻击场景
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６　总结和展望

本节主要对目前研究工作中存在的问题以及未

来的工作进行总结和展望．
６．１　当前工作存在的问题

当前的研究工作还有许多尚未很好解决的问

题,这些问题的解决有利于将技术应用到现实ICS
系统中,对未来的研究工作也具有很好的指导意义．

１)缺乏全面的性能指标．传统的入侵检测模型

一般用表３所示的４个数据(TN,FN,TP,FP)来
评价模型性能,这４个数据可以刻画模型的准确率、
精确度、召回率以及F１值等评估指标．Gauthama
Raman等人[３３]提出了冲突因子指数(CiF),作为检

测准确率和误报率的权衡,这个指标可以更准确地

评估检测性能．但是这些指标无法全面评估工业互

联网中入侵检测模型的性能,目前的指标只专注于

分类结果,并未考虑检测过程和检测环境的约束．
在ICS场景中,指标不应该只局限在分类指标

上,研究人员应该基于ICS自身的特点和要求,发
掘新的指标,从不同角度证明检测方法的先进性和

有效性．
２)数据问题．
① 由表４可知,大部分工作都是基于试验台模

拟数据进行,少量工作选择在真实系统中运行测试

模型效果．相比试验台模拟运行产生的数据,真实系

统的数据的噪声比较多,而且攻击的种类和数量也

有所不同,这就需要IDS模型在设计或训练的时候

就要考虑到真实系统的特点,提高模型的鲁棒性．
② 随着ICS系统的智能化和复杂化,数据的规

模和维度都会迅速增加,数据维度高会严重影响模

型的处理速度,进而影响模型的实时性．针对该问

题,传统的解决方法是使用聚类或降维的方式对数

据进行处理,然后再使用机器学习方法进行检测分

类,但是传统机器学习算法速度快,效果相对较差,
不能很好地提取特征中的信息．深度神经网络算法

具有强大的表征能力,可以胜任特征工程,但是深度

神经网络算法训练过程复杂,需要消耗巨大的计算

资源,难以达到ICS对实时性的要求,因此高维海量

数据的处理是ICS领域应该着手解决的问题之一．
③ 由于异常事件的发生并非常态时间,所以系

统中采集到的异常流量数据规模远远小于正常流量

数据的规模,数据不平衡的问题会严重影响基于机

器学习算法的ICSIDS的检测准确率．目前针对数

据不平衡问题的研究较少,大部分工作还停留在采

用欠采样、过采样等方法来缩小样本规模差距,但是

这２种方法都会给模型带来新的问题,目前比较好

的解决方式是通过 GAN或强化学习的方式来生成

异常数据,但是这方面的工作十分缺乏,所以数据不

平衡问题一直是该领域存在的痛点之一．
３)计算复杂度偏高．机器学习算法相比统计算

法和规则法,计算复杂度偏高,但是ICS的计算资

源相对有限,目前大部分工作在设计入侵检测系统

时,过分注重模型分类性能,而忽略了系统计算资源

的限制,导致检测模型失去实用性,研究人员需要充

分考虑目标ICS的计算资源,设计合理的计算模

型,通过数据降维等方式减少计算复杂度．
４)概念偏移(conceptdrift)．概念偏移是机器学

习模型常见的问题之一,是指假如模型的目标变量

为y,当模型没有发生变化时,得到y 的条件却发生

了变化,导致模型不再适用的问题．按照变化的速

度,概念漂移[９６]又可以分为突变型、重复型、增量型

以及渐变型,概念漂移可能会导致模型性能降低或

失效,判断概念漂移的发生并及时更新模型对机器

学习的应用的可靠性与可用性至关重要．近几年,概
念漂移的检测工作已经引起了广泛的关注和参与,
根据方法不同,可以分为基于错误率的检测和基于

数据分布的检测．基于错误率的检测是指通过分类

错误率上升时来判断是否触发进行漂移检测,如
DDM(driftdetectionmethod)[９７]．基于数据分布的

漂移检测,通过计算数据分布的差异度来进行检测,
不仅可以检测时间维度上的漂移,也可检测数据集

内部的概念差异,但是这类方法通常需要消耗巨大

的计算资源,比如ITA[９８]．除了可以检测到模型的

概念漂移,更重要的是,发生概念漂移后如何对模型

进行调整,其中最简单有效的方法就是在新的数据

对应关系下训练新的检测模型,但是对于ICS来

说,设备无法暂停工作,难以进行版本更新．所以需

要目前的工作专注于在ICS场景限制条件下的概

念偏移的检测工作,以及如何在不停机的情况下实

现自我更新等问题．
５)模型评估和比较问题．由表４可知,大部分

文献使用的数据集、评估指标各不相同,导致这些工

作很难放到一起比较．大部分文献也只是展示了研

究工作的优点,而忽略了工作中可能存在的问题和

缺陷．所以很难发现不同模型存在的问题．另外,还
存在指标本身不规范的问题,例如检测延迟这一指

标,不同的研究工作使用的单位、定义以及计算方式

都有所不同,而且所处的ICS环境也不同,这就导

致虽然指标相同,但也难以放在一起比较．所以需要
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进行评估指标的标准化,针对ICSIDS的每项性能

都有唯一且确定的指标,研究人员需要针对这些繁杂

的指标和数据集进行整理分析,对指标进行明确的

定义,并对其计算过程进行规范．
６．２　展　望

基于目前机器学习相关工作的成果以及发展,
我们对未来入侵检测工作的展望主要可以分为２部

分:可解释机器学习的应用和对抗机器学习的应用．
６．２．１　解释学习

由于机器学习技术的不透明性,几乎所有的基

于机器学习算法的入侵检测技术对于用户来说都是

一个黑盒,这导致该技术在实际应用当中存在很大

的不确定性．在工业控制系统等执行关键任务的系

统的实际应用当中,采用机器学习技术的异常检测

技术的精确度还达不到要求,所以通过解释学习的

方式,增加机器学习检测过程的透明性,这对于提高

基于机器学习技术的入侵检测系统的实用性具有重

要的意义．比如文献[９９]和文献[１００]已经开始着手

该方向的工作．文献[９９]使用对抗的方法来解释正

常和异常状态之间的差异;文献[１００]专注于利用神

经网络中输入特征和检测结果之间的相关性来提高

透明度以增加用户信任．
６．２．２　对抗样本攻击

机器学习本身作为一个计算机系统,同样也具

有安全漏洞．Szegedy等人[１０１]首次提出了对抗样本

攻击(adversarialexampleattack)的概念,通过在样

本中加入微小的扰动就可以误导机器学习模型做出

错误的选择．对抗攻击对于基于机器学习算法入侵

检测系统来说是一个巨大的威胁,它为恶意的网络

攻击者提供了强大的武器,尤其在工业互联网这种

对安全相对敏感的领域,最近基于机器学习的ICS
IDS也成了对抗攻击的对象[８３Ｇ８６,１０２Ｇ１０３]．

在ICS中,基于机器学习的入侵检测模型的准

确率并不是最重要的,重要的是,它不仅要提高模型

对抗噪声的鲁棒性,面对对抗样本时的鲁棒性也同

样重要．基于机器学习算法的入侵检测技术要在真

实的ICS中部署,就要考虑如何防御对抗攻击的问

题．图像领域研究工作者提出了一些对抗攻击的防

御方法,这些方法大多可以作为借鉴参考迁移到入

侵检测领域中．文献[１０４]阐述了一种基于生成对抗

网络(generativeadversarialnetwork,GAN)框架

的防御,将对抗样本转化为正常样本,降低对抗扰动

的影响．文献[１０５]通过选择２个相同的模型作为教

师模型和学生模型,将原始分类模型学到的信息迁

移到小型网络模型中,实现了梯度遮掩．该方法可以

有效抵抗一些基于梯度的小幅度扰动的对抗攻击．
文献[１０６]提出了一种基于快速梯度符号法(fast
gradientsignmethod,FGSM)的对抗训练方法,通
过构建大量的对抗样本,将对抗样本混入训练样本

中训练模型来增加模型的鲁棒性．
但是现有的对抗攻击防御措施也存在许多问

题[１０７],比如基于识别对抗样本的防御措施存在拒

绝合法样本的可能性,造成系统的可用性降低．基于

对抗训练的防御措施不能从根本上加固目标,只能

提高模型在遇到对抗样本时的鲁棒性,并不能完全

消除安全隐患．这些问题是基于机器学习方法ICS
IDS亟需解决的问题．

７　结束语

随着工业领域与互联网的融合,越来越多的安

全问题被暴露出来．入侵检测技术逐渐成为应对这

些问题的主要手段,随着机器学习技术在其他领域

的成功,机器学习技术也逐渐被应用到工业互联网

入侵检测系统中．但是由于工业互联网的自身特性,
研究人员不仅需要了解机器学习技术,更要对ICS
的攻击场景有深入的了解,在此基础上合理设计机

器学习模型解决工业互联网入侵检测系统存在的问

题和挑战．
本文调研了基于机器学习的工业互联网入侵检

测技术的相关研究,分析了不同研究工作存在的优

势和不足,并对这些工作中使用的数据集进行了整

理,总结了传统互联网和工业互联网入侵检测工作

的不同之处,指出了基于机器学习的工业互联网入

侵检测技术的研究过程独特性,并提出了面向研究

重点的分类方法．通过总结分析,我们发现,大部分

工作过分侧重于使用新算法提高模型的准确性,而
忽略了ICS攻击场景的特殊性以及模型应用到ICS
中的一些困难和挑战．因此,后续工作应该在这３个

研究方向上齐头并进,相辅相成．没有好的算法,就
无法提高入侵检测系统的检测效果．忽略ICS场景

的不同特点和应用时的条件的限制,也往往会导致

模型无法在实际应用中发挥好的效果．本文最后总

结了今后工作中应该改进的问题,并提出了２个未

来非常具有前景的研究方向．
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