HEILTR S KR DOI1:10.7544/issn1000-1239.20211147
Journal of Computer Research and Development 59(5): 994-1014, 2022

ETHSEF I T BEECM N R4 4R ik

MEe KeET RART F R Mz gRE OB B 5§ 0 Ok A
POP E BB E B TR dbat 100093)

PO E R K A W G s R A e bt 100049)

COREFBEFTIR R JLE 10019D

EZR TR B Z LR FL e 100040)

(liugixu@iie.ac.cn)
Survey on Machine Learning-Based Anomaly Detection for Industrial Internet

Liu Qixu'?, Chen Yanhui'?, Ni Jieshuo'?, Luo Cheng®, Liu Caiyun', Cao Yaqin', Tan Ru', Feng Yun',
and Zhang Yue'*?

"(Institute of Information Engineering , Chinese Academy of Sciences, Beijing 100093)

*(School of Cyber Security , University of Chinese Academy of Sciences, Beijing 100049)

*(China Academy of Information and Communications Technology s Beijing 100191)

"(China Industrial Control Systems Cyber Emergency Response Team , Beijing 100040)

Abstract  Machine learning has achieved great success in computer vision, natural language
processing and other fields in the past few years. In recent years, machine learning technology has
gradually become one of the mainstream technologies in the field of cyber-security, and many
intrusion detection technologies based on machine learning have emerged in the field of the industrial
Internet. Aiming at landing machine learning-based intrusion detection technology into the real
industrial system network, we conduct an in-depth analysis of related work in the field. We summarize
the uniqueness of machine learning-based intrusion detection in the industrial Internet and extract
three research points from the workflow of intrusion detection in industrial control system (ICS).
Based on the research points that different researches focus on, we divide machine learning-based
intrusion detection system (IDS) in ICS into three categories: algorithm design-oriented researches,
application challenges and limitations-oriented researches, and ICS attack scenario-oriented researches.
The taxonomy shows the significance of different research work as well as exposes the problems
existing in the research field at present. It can provide a good research direction and reference for
future work. In the end, we propose two promising research directions in this field based on the latest

developments in machine learning.

Key words industrial Internet; machine learning; intrusion detection; taxonomy; industrial control
system (ICS)
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Fig. 1 Structure of industrial control system
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Fig. 4 A taxonomy for ICS IDS by ref [37]
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Fig. 6 Overall architecture of machine learning based ICS IDS
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Fig. 7 Framework of the detection technique
proposed in ref [64]
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Fig. 8 Architecture of the autoencoder model
in ref [70]
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Fig. 9 Detection model proposed in ref [54]
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Fig. 10 Detection model proposed in ref [73]
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