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Abstract A new supervised manifold learning method is proposed in this paper in order to present a new
strategy to efficiently apply manifold learning and nonlinear dimensionality reduction methods to supervised
learning problems. The new method realizes efficient supervised learning mainly based on integrating the
topology preserving property of the manifold learning methods Isomap and LLE and some prominent
properties of support vector machine such as efficiency on middle and small sized data sets and essential
capability of support vectors calculated from support vector machine. The method is realized via the
following steps first to apply Isomap or LLE to get the embeddings of the original data set in the low
dimensional space then to obtain support vectors which are the most significant and intrinsic data for the
final classification result by using support vector machine on these low dimensional embedding data

subsequently to get support vectors in the original high dimensional space based on the corresponding labels
of the obtained low dimensional support vectors finally to apply support vector machine again on these high
dimensional support vectors to gain the final classification discriminant function. The good performance of
the new method on a series of synthetic and real world data sets verifies the feasibility and efficiency of the

method.
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Fig. 1 Comparisons of the classification results. a By SVM b  Showing 2-D embedding result calculated by Isomap and
LLE and ¢ By ASMLM.
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Table 1 Comparisons of Five Methods
1 5
Method Training Time s Classification Rate %
SVM 3248.9 99.91
Isomap + M 31325.0 94.35
LLE+M 3278.6 98.50
Isomap + ASMLM 828.2 99.91
LLE+ ASMLM 381.0 99.64
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Fig. 2 Demonstrations of support vectors found by Isomap.
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Fig. 3 Demonstrations of support vectors found by LLE.
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Research Background

Manifold learning methods for nonlinear dimensionality reduction have attracted more and more attentions in the recent decade
due to their excellent performance especially on unsupervised learning and data visualization. However these methods still can’ t be
applied to supervised learning problem very efficiently. In this paper a new supervised manifold learning method is proposed by
integrating SVM and manifold learning methods. Because of the prominent properties of both adopted methods the new method has
excellent ability to deal with the supervised learning problem. Our work is supported by the projects of the National Natural Science

Foundation of China 70531030 and 60575045



