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A Selective Approach to Neural Network Ensemble Based on Clustering Technology
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Abstract A neural network ensemble is a very popular learning paradigm where the outputs of a set of
separately trained neural network are combined to form one unified prediction. To improve the effectiveness
of ensemble neural networks in the ensemble are not only highly correct but make their errors on different
parts of the input space as well. However most existing approaches ensemble all the available neural
networks for prediction. In this paper a selective approach to neural network ensemble based on clustering
technology is presented. After individual neural networks are trained the clustering algorithm is used to
select a part of the trained individual networks in order to reduce their similarity. Then many selected
neural networks are combined. Experimental results show that this approach outperforms the traditional

ones that ensemble all of the individual networks.
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Fig. 3 Errors with different ensemble methods for

Mexican Hat data set.
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Table 1 Relation Between Errors and Number of

Clusters for Boston Housing Data Set

aQ

1 Boston housing

Number of Clusters Error
6 0.167
15 0.168
25 0.164
30 0.171
35 0.169
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Research Background

This work is supported by the National Natural Science Foundation of P.R. China Grant No. 60443003 . Ensemble learning
has become one of research fields of machine learning it dramatically improves generalization performance of learning machines.
Recently neural network ensemble techniques have gained widespread use among neural network practitioners. There are many
different varieties but the most popular include some elaboration of bagging boosting or stacking. In a regression problem Krogh
and Vedelsby showed that as long as the average of the individual network generalization errors in an ensemble remains constant
increasing diversity will improve generalization performance. It also confirms intuition—an ensemble that consists of a thousand
identical networks will not perform any better than an individual network. Although they have established the importance of
generating diversity in neural network ensembles the question remains how is diversity created so that ensemble generalization
performance is improved In this case we attempt to study an approach to improving diversity of neural networks that is to use
clustering technology. After individual neural networks are trained the clustering algorithm is used to select a part of the trained
individual networks in order to increase their diversities. Then many selected neural networks are combined. Experimental results
show that this approach outperforms the traditional ones that ensemble all of the individual networks. We believe that this method is

very promising and is suitable to engineering design of neural network ensembles.



