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Static Detection of Deadlocks in OpenMP Fortran Programs
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Abstract The deadlocks related to barriers are one kind of the major factors that cause OpenMP programs
to malfunction. Static detection of these hazards can help enhance the correctness of OpenMP programs
before they are executed. For convenience of detection this kind of deadlocks is classified into two
categories. By searching and data flow analysis the first and the second category of deadlocks are detected
according to the existence rule and nonuniformity rule respectively. Traditional control flow graph is
extended to represent OpenMP programs. For each detected deadlock backtracking is used to record the
related paths in the control flow graph and static branch prediction is employed to quantify its severity.
Based on these ideas a tool called C-Checker to statically detect deadlocks in OpenMP Fortran programs

is implemented. Experiments show the C-Checker can effectively detect the deadlocks concerned.
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1 program demol

2 integer omp_get thread -num
3 dsum=0

4 call omp set _-num threads 4
5 $OMP PARALLEL PRIVATE id
6  id = omp_get _thread num
7 $OMP CRITICAL

8 call work id isum

9 $OMP END CRITICAL

10 $OMP END PARALLEL
11 end program demol

12 subroutine work ipart itotal
13 itotal = itotal + ipart

14  $OMP BARRIER

15 end subroutine work

Fig. 1 An OpenMP program with the st category of deadlock.
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1 program demo?2
2 integer omp_get thread —num

3 call omp set _-num _threads 5

4 $OMP PARALLEL PRIVATE tid
S id = omp_get _thread —num

6 if id<4 then

7 $OMP BARRIER

8 else

9 print *  zid

10 end if

11 $OMP BARRIER

12 $OMP END PARALLEL

13 end program demo2

Fig. 2 An OpenMP program with the 2nd category of deadlock.
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2 Checker
. C-Checker
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call omp_set_num_threads(4) --» call site
3 F-- --» end of backtracking
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Fig. 3 The control flow graph of procedure demol .
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Table 1 Heuristic Rules for Static Branch Prediction
1
Category Branch Probability
branch leading to loop body 0.8
branches of loop header
branch leading beyond loop 0.2
equality comparison of true branch 0.1
real data false branch 0.9
branches of if integer data no true branch 0.8
construct less than 0 false branch 0.2
equality comparison of true branch 0.1
pointers false branch 0.9
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OpenMP CPU 512MB 2.4.21 Red Hat
Fortran . Linux CCRG OpenMP compiler 1.0. 7
C-Checker OpenMP OpenMP 8
C-Checker demol demo?2 demo3
OpenMP C-Checker 2 . SPEComp2001

[98]
©

Pentium [V 2.4GHz

, 1

( call omp_init_nest_lock (nl) )

1 program demo3
call omp_init _nest lock nl

read * i

SOMP PARALLEL

call omp _set _nest Lock nl

call omp _set _nest Lock nl

i= -1

2
3
4
5
6 il i.ge.0 then
7
8
9

else

10 i=2

11 endif

12 call omp_unset _nest _Lock nl
13 $OMP BARRIER

14 if i.eq.—1 then

15 call omp _unset _nest lock nl

16 end if

__________ —| ENDPARALLEL |- — —

17 $OMP END PARALLEL 17

19 end program demo3 18Cexit)

18 call omp _destroy_nest Llock nl C call omp_destroy_nest_lock (nl) )

Fig. 7 An OpenMP program using nestable lock routine. Fig. 8 The control flow graph of program demo3.

7 OpenMP 8 demo3

Table 2 Results of Applying C-Checker to 3 Examples

2 C-Checker 3
Program Barrier Block Path Related to Deadlock Execuion Probability
demol 12 56112 1.0
demo? 5 3589 389 0.9375
demo3 12 5711 11 12 0.8

Table 3 Results of Applying C-Checker to SPEComp2001

3 C-Checker SPEComp2001
Program S line Deadlock Program Compilation Time

Reported Real C-Checker off s C-Checket on s Growth Ratio %
swim. { 454 0 0 0.030 0.033 10.0
mgrid. { 552 0 0 0.047 0.053 12.8
gafort. {90 1343 0 0 0.047 0.110 134.0
wupwise. [ 2470 0 0 0.080 3.226 4022.5
applu. f 3808 2 0 0.310 0.690 122.6
apsi. f 7666 0 0 0.326 9.433 2793.6
fma. {90 60982 0 0 3.560 109.900 2987.1
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$OMP PARALLEL PRIVATE npr npy
O
do L=3 npx+apy+nz—3
O
$OMP BARRIER line 3352
end do
do L=npx+npy+nz 2 —1
O
$OMP BARRIER line 3373
end do
$OMP END PARALLEL

Fig.9 A code segment of applu.f that contains BARRIERs.
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Although OpenMP is used widely for shared memory parallel programming nowadays OpenMP programs may fail due to

deadlocks data race and so on. Hence it is valuable to remove these hazards from OpenMP programs. Static analysis examines

program code and tries to find software defects before the programs are executed. We use static analysis to detect the deadlocks related

to barriers in OpenMP programs. Program flow analysis has become a commonly used static analysis technique. We extend traditional

program flow analysis techniques to detect deadlocks. Sometimes the program information needed by deadlock detection is either

unavailable or difficult to obtain at compile time. Consequently C-Checker may do much conservative analysis and report false

alarms. To address this problem we quantified the severity of the reported deadlocks and recorded the related execution paths.

Symbolic evaluation may help eliminate infeasible paths and reduce false deadlocks reported. Our work is supported by the 863 High-

Tech Research and Develop Program of China.



	F1: 
	F2: 
	F3: 


