ISSN 1000-1239/CN 11-1777/ TP
Journal of Computer Research and Development 44 3 536~543 2007

OpenMP Fortran

410073
wzhaofeil981 (@163 . com

Static Detection of Deadlocks in OpenMP Fortran Programs

Wang Zhaofei and Huang Chun

School of Computer Science National University of Defense Technology Changsha 410073

Abstract The deadlocks related to barriers are one kind of the major factors that cause OpenMP programs
to malfunction. Static detection of these hazards can help enhance the correctness of OpenMP programs
before they are executed. For convenience of detection this kind of deadlocks is classified into two
categories. By searching and data flow analysis the first and the second category of deadlocks are detected
according to the existence rule and nonuniformity rule respectively. Traditional control flow graph is
extended to represent OpenMP programs. For each detected deadlock backtracking is used to record the
related paths in the control flow graph and static branch prediction is employed to quantify its severity.
Based on these ideas a tool called C-Checker to statically detect deadlocks in OpenMP Fortran programs

is implemented. Experiments show the C-Checker can effectively detect the deadlocks concerned.

Key words OpenMP deadlock BARRIER static detection

BARRIER OpenMP
OpenMP
1 2
OpenMP
OpenMP Fortran C-Checker .
OpenMP BARRIER
OpenMP BARRIER
TP311.56
OpenMP concurrent control flow graph
L, CCFG
OpenMP z, cobegin/coend parloop
OpenMP . CCFG
BARRIER . Diego
OpenMP . CCFG +
OpenMP
3 5

2006-04-03 2006-09-18
“ " 2002AA1Z2101 2004AA1Z2210

OpenMP Fortran

537

1 BARRIER

.OpenMP BARRIER

1

BARRIER
1 BARRIER

BARRIER
OpenMP

1 program demol

2 integer omp_get thread -num
3 dsum=0

4 call omp set _-num threads 4
5 $OMP PARALLEL PRIVATE id
6 id = omp_get _thread num
7 $OMP CRITICAL

8 call work id isum

9 $OMP END CRITICAL

10 $OMP END PARALLEL
11 end program demol

12 subroutine work ipart itotal
13 itotal = itotal + ipart

14 $OMP BARRIER

15 end subroutine work

Fig. 1 An OpenMP program with the st category of deadlock.

1 1 OpenMP

1 program demo?2
2 integer omp_get thread —num

3 call omp set _-num _threads 5

4 $OMP PARALLEL PRIVATE tid
S id = omp_get _thread —num

6 if id<4 then

7 $OMP BARRIER

8 else

9 print * zid

10 end if

11 $OMP BARRIER

12 $OMP END PARALLEL

13 end program demo2

Fig. 2 An OpenMP program with the 2nd category of deadlock.

2 2 OpenMP

demol 14 BARRIER
CRITICAL

4 CRITICAL
BARRIER demol
BARRIER

MASTER SINGLE

7 11
4 2

BARRIER
BARRIER. demo?
SECTIONS
static

static

BARRIER

SECTIONS
2

BARRIER

BARRIER
1 2
BARRIER

2 BARRIER

BARRIER C-Checker

.OpenMP
1 OpenMP .

BARRIER CRITICAL SINGL
OpenMP API. OpenMP

2.1 OpenMP

OpenMP API

538 2007 44 3

>, 2
THREADPRIVATE OpenMP
Fortran 5
1 active . C-
2 Checker
. C-Checker
3 4 5 demol work active
demo?2 6
demol
1
2 demol
isum=0 .
call omp_set_num_threads(4) --» call site
3 F-- --» end of backtracking
:_ 4_ — PARALLEL T v --» active flag
|
: | id=omp_get_thread_num() | | @l
5 |
* —— CRITICAL - : Fig. 6 The call graph of program demol.
I I
| & | 6 demol
| * | call work (id, isum) | Y v emo
|
I 7 7 Pl
| '——ﬂs ENDCI;ITICAL F—- | 2.2
| |
—— END PARALLEL |- — -~

6
9 . C-Checker

Fig. 3 The control flow graph of procedure demol .
3 demol

10

X

11
itotal=itotal +ipart

p c

12 v 5

BARRIER

1

é

Fig. 4 The control flow graph of procedure work .

w

4 work

1

L

2

2.3
| call omp_set_num_threads (5) |
3 C-

—_—— PARALLEL —
Checker

4
‘I tid=omp_get_thread_num() }» C-Checker

if (tid<4)

-1

K
5 v 6 |
(_BARRIER) | print* #id | v
7 ¥ I

—] end if [— ——4

BARRIER

|

|

|

| 9

- — — < ENDPARALLEL | — —
10

I

|

I

I

I
|
f
|

r—>--

4

|
|
!
|
|
A BARRIER
|
I
|
|
_I

C-Checker

&

Fig. 5 The control flow graph of procedure demo?2 .
5 demo? C-Checker

OpenMP Fortran 539
7
1
C- C-Checker
Checker .
C-Checker n 1/n. C-Checker
Checker
C-Checker
. Thomas
Table 1 Heuristic Rules for Static Branch Prediction
1
Category Branch Probability
branch leading to loop body 0.8
branches of loop header
branch leading beyond loop 0.2
equality comparison of true branch 0.1
real data false branch 0.9
branches of if integer data no true branch 0.8
construct less than 0 false branch 0.2
equality comparison of true branch 0.1
pointers false branch 0.9
2.4 1 BARRIER C-Checker
C-Checker 1 BARRIER
BARRIER CRITICAL Checker
MASTER SINGLE
1 . 3
2
.OpenMP C-Checker
1
C-Checker
1 1. .
0 . C-Checker 2.4.2
Diego 4 C-Checker
2.4.1 3 1 SL NL
3 1 BB
C-Checker SECTIONS
BARRIER . 3 BARRIER
C-Checker
C-Checker 1. BB SL

BB

540

2007 44 3

SL
2. BB NL
BB NL
NL
0
C-Checker
1 2 BB
NL 0
NL C-Checker
C-Checker
1 BB
Checker BB
C-Checker
BB
NL NL 0
C-Checker BB
1
1 Checker
2 Checker
2.5 2
C-Checker 2
BARRIER 2
1 2.4.1
SECTIONS 2
2 C-Checker
BARRIER
BARRIER
BARRIER ' .
C-Checker
BARRIER BARRIER
1. BARRIER
1 BARRIER
2
BARRIER
3

C-Checker

BARRIER
BARRIER

BARRIER

BARRIER

BARRIER *,

BARRIER

BARRIER
BARRIER

* BARRIER

%, BARRIER

BARRIER
BARRIER

1
*
2 C-Checker
BARRIER
C-Checker

n BARRIER

t . 7

P
d BARRIER
I<k<n C,=d.

C, 1<<i<n . 2

prob=1-— Z Q;
C-Checker 2

1<i<n.

BARRIER

BARRIER C

Q(/

Q, =>)P,.
D= d=

d| i
prob

j JED.

C-Checker

BARRIER

BARRIER
3 2
C-Checker

CCRG OpenMP
8

OpenMP Fortran

BARRIER

OpenMP Fortran

Fortran

OpenMP Fortran 541
OpenMP CPU 512MB 2.4.21 Red Hat
Fortran . Linux CCRG OpenMP compiler 1.0. 7
C-Checker OpenMP OpenMP 8
C-Checker demol demo?2 demo3
OpenMP C-Checker 2 . SPEComp2001

[98]
©

Pentium [V 2.4GHz

, 1

(call omp_init_nest_lock (nl))

1 program demo3
call omp_init _nest lock nl

read * i

SOMP PARALLEL

call omp _set _nest Lock nl

call omp _set _nest Lock nl

i= -1

2
3
4
5
6 il i.ge.0 then
7
8
9

else

10 i=2

11 endif

12 call omp_unset _nest _Lock nl
13 $OMP BARRIER

14 if i.eq.—1 then

15 call omp _unset _nest lock nl

16 end if

__________ —| ENDPARALLEL |- — —

17 $OMP END PARALLEL 17

19 end program demo3 18Cexit)

18 call omp _destroy_nest Llock nl C call omp_destroy_nest_lock (nl))

Fig. 7 An OpenMP program using nestable lock routine. Fig. 8 The control flow graph of program demo3.

7 OpenMP 8 demo3

Table 2 Results of Applying C-Checker to 3 Examples

2 C-Checker 3
Program Barrier Block Path Related to Deadlock Execuion Probability
demol 12 56112 1.0
demo? 5 3589 389 0.9375
demo3 12 5711 11 12 0.8

Table 3 Results of Applying C-Checker to SPEComp2001

3 C-Checker SPEComp2001
Program S line Deadlock Program Compilation Time

Reported Real C-Checker off s C-Checket on s Growth Ratio %
swim. { 454 0 0 0.030 0.033 10.0
mgrid. { 552 0 0 0.047 0.053 12.8
gafort. {90 1343 0 0 0.047 0.110 134.0
wupwise. [2470 0 0 0.080 3.226 4022.5
applu. f 3808 2 0 0.310 0.690 122.6
apsi. f 7666 0 0 0.326 9.433 2793.6
fma. {90 60982 0 0 3.560 109.900 2987.1

2007 44 3

542
C-Checker demol 14 BARRIER
1 CRITICAL
. C-Checker demo?2 7
BARRIER 2 . C-Checker 5
BARRIER 2 3 3
. C-Checker
demo? 2 . 1
BARRIER
0.5. C-Checker 2.5
0.9375.
C-Checker demo3 13 BARRIER
BARRIER 12
12
. C-Checker
nl 0
2 4 3 . 2 C
Checker 13 BARRIER
nl 1 .
C-Checker applu. { 3352 3373
BARRIER BARRIER
9 .
BARRIER
. C-Checker
4 BARRIER
1
BARRIER 2 3
3352 3373 BARRIER 4
1 9 BARRIER .
4 .
C-Checker
3
BARRIER C-Checker
applu.f
$OMP PARALLEL PRIVATE npr npy
O
do L=3 npx+apy+nz—3
O
$OMP BARRIER line 3352
end do
do L=npx+npy+nz 2 —1
O
$OMP BARRIER line 3373
end do
$OMP END PARALLEL

Fig.9 A code segment of applu.f that contains BARRIERs.

9 applu.f BARRIER

fma.f90

wupwise.{ apsi.f

C-Checker OpenMP

. SPEComp2001
C-Checker
C-Checker
C-Checker
2 1

3 C-Checker . 1
BARRIER OpenMP
C-Checker .

C-Checker

C-Checker . 3

OpenMP Fortran
BARRIER
C-Checker OpenMP
. C-Checker
1
2 . C-Checker

1 OpenMP Architecture Review Board. OpenMP Fortran
application program interface Version 2.5 OL . http //

www.openmp.org 2005-05

OpenMP Fortran

543

2 P Paul S Sanjiv. OpenMP support in the Intel thread checker
C . The 4th Int'l Workshop on OpenMP Application and
Tools Toronto Canada 2003

3 L Jaejin. Compilation techniques for explicitly parallel programs
Ph D dissertation D . Urbana Illinois University of Illinois
at Urbana Champaign 1999

4 N Diego. Analysis and optimization of explicitly parallel
programs Ph D dissertation D
Alberta 2000

. Edmonton University of

5 S Steven. Advanced Compiler Design and Implementation M .
San Francisco California Morgan Kaufmann 1997

6 S Micha P Amir. Two approaches to interprocedural data flow
analysis G . In Program Flow Analysis Theory and
Applications. Engiewood Cliffs New Jersey Prentice-Hall
1981. 189-233

7 B Thomas L James. Branch prediction for free] . ACM
SIGPLAN Notices 1993 28 6 300-313

8 Huang Chun Yang Xuejun. CCRG OpenMP Experiments and
improvements C . The 1Ist Int'l Workshop on OpenMP
Eugene Oregon USA 2005

9 A Vishal D Max E Rudolf et al. SPEComp A new
benchmark suite for measuring parallel computer performance

C . The 2nd Int'l Workshop on OpenMP Application and
Tools West Lafayette IN USA 2001

Research Background

Wang Zhaofei born in 1981. Received his
B. A.”s and M. A.’s degree in computer
technology from Hebei
University Hebei China in 2003 and from

the National

science and

University of Defense

Technology Hunan China in 2005 respectively. Since 2006
he has been a Ph. D. candidate at the National University of

Defense Technology. His current research interests include

static program analysis.

1981

Huang Chun born in 1973. Associate
professor at the National University of
Defense Technology since 2003. Her main

research interests include advanced compiler

parallel programming environment and
embedded system.
1973

Although OpenMP is used widely for shared memory parallel programming nowadays OpenMP programs may fail due to

deadlocks data race and so on. Hence it is valuable to remove these hazards from OpenMP programs. Static analysis examines

program code and tries to find software defects before the programs are executed. We use static analysis to detect the deadlocks related

to barriers in OpenMP programs. Program flow analysis has become a commonly used static analysis technique. We extend traditional

program flow analysis techniques to detect deadlocks. Sometimes the program information needed by deadlock detection is either

unavailable or difficult to obtain at compile time. Consequently C-Checker may do much conservative analysis and report false

alarms. To address this problem we quantified the severity of the reported deadlocks and recorded the related execution paths.

Symbolic evaluation may help eliminate infeasible paths and reduce false deadlocks reported. Our work is supported by the 863 High-

Tech Research and Develop Program of China.

	F1:
	F2:
	F3:

