一种基于位平面综合特征的彩色图像检索方案

王向阳^{1,2} 胡峰丽¹
'(辽宁师范大学计算机与信息技术学院 大连 116029)
?(北京大学视觉与听觉信息处理国家重点实验室 北京 100871)
(wxv37@126.com)

An Efficient Color Image Retrieval Technique Based on Multi-Features of Bit-Plane

Wang Xiangyang^{1 2} and Hu Fengli¹

¹(School of Computer and Information Technology, Liaoning Normal University, Dalian 116029) ²(National Laboratory of Machine Perception, Peking University, Beijing 100871)

Abstract Content-based image retrieval has become a significant research topic because of the proliferation of video and image data in digital form. Increased bandwidth availability to access the Internet in the near future will allow the users to search for and browse through video and image databases located at remote sites. Therefore fast retrieval of images from large databases is an important problem that needs to be addressed. The disadvantages of the traditional color image retrieval based on color histogram are not considering the color spatial distribution and high complexity of computation. And what 's more, the retrieval results with the condition of noise image are not good as expected. So an efficient color image retrieval technique based on multi-features of bit-plane is proposed in this paper. Firstly, according to the noise attack characteristic, the significant bit-planes are extracted from the color image. Secondly, the weighted color histograms are extracted from the significant bit-plane is computed as spatial feature. Finally, the similarity between color images is computed by using a combined index based on color feature and spatial feature. Experimental results show that the proposed color image retrieval is more accurate and efficient in retrieving the user-interested images. Especially, it can retrieve the noise (including fuzzy, sharpen, and illumination, etc.) image effectively.

Key words image retrieval ; bit-plane ; weighted color histogram ; information entropy ; noise

摘 要 传统的基于颜色直方图的彩色图像检索方法存在严重不足.首先是丢失颜色空间分布信息及 特征维数过高,更重要的是无法有效检索含噪声图像.为克服此缺陷,提出了一种基于位平面综合特征 的彩色图像检索算法.首先,结合光照、锐化、模糊等噪声攻击特点,从原始彩色图像中提取出重要位平 面;然后选取重要位平面的加权颜色直方图作为颜色特征,选取重要位平面的空间信息熵作为空间特 征;再综合利用上述颜色、空间两个特征计算图像间内容的相似度,并进行彩色图像检索.仿真实验表 明,算法能够准确和高效地查找出用户所需内容的彩色图像,并且具有较好的查准率和查全率(特别对 于含噪声图像).

关键词 图像检索;位平面;加权颜色直方图;信息熵;噪声

中图法分类号 TP391

收稿日期 2006-01-20 ;修回日期 2007-01-25

基金项目: 辽宁省自然科学基金项目(20032100);视觉与听觉信息处理国家重点实验室开放基金项目(0503);大连市科学技术基金项目 (2006J23JH020);江苏省重点实验室开放基金项目(ZK205014);江苏省计算机信息处理技术重点实验室开放课题基金项目 (KJS0602)

近年来 随着数字技术的迅速发展和普及应用, 每天从政府机构、企业甚至个人都产生出大量的图 像数据. 如何对如此大量的图像数据进行有效的组 织、管理,并从中快速、准确地找到用户所需内容成 为一个非常重要的问题. 传统图像检索方式利用人 工对图像进行文字标注,然后利用基于关键字的检 索技术来检索图像.为了克服人工标注主观性强及 耗时等缺点,基于内容的图像检索(content based image retrieval, CBIR)技术得到了广泛关注,并已 成为国际学术界研究的一个热点[1-2]. 该技术对图 像内容的描述不再依赖于人的手工标注,而是提取 图像的低层视觉特征,如颜色、纹理、形状以及对象 的空间关系等,建立图像的多维特征矢量进行相似 查询和检索.目前许多研究工作正围绕如何提取图 像的底层特征、图像之间相似度的度量以及寻找有 效的图像搜索策略等方面展开.

在众多的图像低层特征中,颜色是一种重要的 视觉信息属性,对于旋转、平移、尺寸变化,甚至各种 形变都不敏感,表现出相当强的鲁棒性,成为现有检 索系统中广泛应用的图像特征.其中,颜色直方图 (color histogram)更是以其特征提取与相似度计算 简单等优点,成为图像检索系统应用最为广泛的颜 色特征.但是,现有颜色直方图检索技术不仅存在 丢失颜色空间分布信息、特征维数过高等不足,更为 重要的是无法有效检索含噪声图像^[3-7].为此,本文 提出了一种基于位平面综合特征的彩色图像检索方 案,其首先结合光照、锐化、模糊等噪声攻击特点,从 原始彩色图像中提取出重要位平面;然后选取重要 位平面的加权颜色直方图作为颜色特征,选取重要 位平面的空间信息熵作为空间特征;再综合利用上 述颜色、空间两个特征计算图像间内容的相似度,并 进行彩色图像检索.

1 数字图像的位平面理论

所谓图像位平面就是将图像中每一个像素值分 解为二进制值,而把所有具有相同权值的位所构成 的平面称为位平面.对于 256 级灰度图像来说,每 个像素占一个字节,即 8 个二进制位,按从高位到低 位的排列为 b7b6b5b4b3b2b1b0,那么所有像素的 b0 位就构成第 0 个位平面,b1 位就构成第 1 个位平面 等等,依此类推,该 256 级灰度图像共包含有 8 个位 平面.同样,我们可以把一幅 24 位真彩色图像分解 成 8 个位平面,所不同的是,其每个位平面均由 *R*, *G*,*B* 三个分量的位平面复合而成.图 1 给出了 24 位真彩色图像 Horse 及其位平面 7 和位平面 3:

Fig. 1 The two bit-plane images of a 24-bit true color image. (a) Original image ;(b) The seventh bit-plane ; and (c) The third bit-plane.

图 1 24 位真彩色图像 Horse 的 2 个位平面. (a)原始图像 (b) 位平面 7 (c) 位平面 3

不难看出,不同信息位对数字图像的贡献是不 同的,较高位平面(以下称为"重要位平面")反映原 始图像的主要内容,而较低位平面所携带的原始信 号能量极少,即忽略较低位平面对原图像质量没有 太大影响.另外,由数字图像相关理论知,数字图像 遭受噪声攻击(光照、锐化、模糊等)以后,其低位平 面信息变化较大,而重要位平面信息几乎没有变化, 也就是说噪声主要集中在较低位平面.因此,提取 重要平面信息来刻画和表示图像内容不仅可以较好 地保留原图像信息,而且能够有效避免噪声干扰.

2 基于位平面综合特征彩色图像检索

2.1 图像位平面的提取

由图像位平面理论知,对于一幅24位真彩色图像(RGB空间),只需要提取其R,G,B分量的最高5个位平面(即重要位平面)就足以表达图像内容.

设 24 位真彩色图像为 $I = \{I(i,j), 0 \le i < M, 0 \le j < N\}, I(i,j)$ 代表原始彩色图像的第 i 行、第 j 列像素的颜色值,则真彩色图像 I 的位平面分解可定义为

$$D_{p,i}(i,j) = B_{p,i}(I(i,j)) = \begin{cases} 1, \text{ gn}(I(i,j)) = \\ 1, \text{ gn}(In(\frac{I(i,j)}{2^{p}})) \text{MOD}(2) = 1, (1) \\ 0, \text{ gn}(In(\frac{I(i,j)}{2^{p}})) \text{MOD}(2) = 0, \end{cases}$$

其中,p=3 A,...,7 表示位平面(p=3 代表位平面 3,p=4 代表位平面 4,依此类推);t=1,2,3 表示 R,G,B 三个分量; $B_{p,t}(\cdot)$ 表示图像的位平面分解 操作. 经过以上位平面分解处理,真彩色图像 I 就 被分解为 $D_{p,t} = \{D_{p,t}(i,j), 0 \le i \le M, 0 \le j \le N\}$ (p=3 A,...,7; t=1,2,3)共 15 个位平面,并且这 些位平面都是二值的(0或1).

2.2 颜色特征的提取

考虑到真彩色图像的每个像素都是由 R,G,B三个分量复合而成的,所以对图像进行位平面分解 后,可将相同权值位平面对应的 R,G,B 三个分量 重新组合成新像素,以形成新的位平面图像,这样由 原来分解出的 15 个位平面最终转换成 5 个位平面图 像(即重要位平面图像) D_p ,其中 $D_p = \{D_p(i,j), 0 \leq i \leq M, 0 \leq j < N\}$, p = 3, A,...,7).显然,对于 R,G,B三个分量来讲,每个分量的取值都是0或1,故重新组 合后的重要位平面图像颜色值范围为 0~7.

本文采用重要位平面图像的加权颜色直方图作 为颜色特征,其提取步骤为

1)将数字图像从 RGB 颜色空间转换到 CIEL*u*v*颜色空间.这是因为,CIEL*u*v*空 间是具有与视觉统一性的色彩空间,其能够正确反 映人的视觉信息,而 RGB 空间与人眼的视觉系统 存在很大的差异性.

2) 对位平面图像 D_p 中的每一种颜色 k 统计直 方图时,首先按照式(2)计算出与其距离最近的3种 颜色:

$$d = \sqrt{(L1 - L2)^{2} + (u1 - u2)^{2} + (v1 - v2)^{2}},$$
(2)

其中,(L1,u1,v1)和(L2,u2,v2)是图像在 CIEL*u*v*空间中的两种颜色.

然后将 k 按照式(3)计算出的相应权值分配到 这3种颜色中去. 这样一种颜色同时与多种颜色之 间建立关系,弥补了传统直方图的缺陷.

$$w_i = \frac{1/d_i}{1/d_1 + 1/d_2 + 1/d_3} , \qquad (3)$$

其中 $_{d_i}$ 为颜色 $_k$ 与颜色 $_i$ 之间的距离.

3)通过统计每个重要位平面图像中各像素点 颜色值的频数,就可以得到重要位平面图像的加权 颜色直方图,其具体描述如下:

$$h_{p}(k) = \sum_{i=0}^{M-1} \sum_{j=0}^{N-1} \begin{cases} 1, \text{ und } D_{p}(i,j) = k \\ 0, \text{ jth } , \end{cases}$$

这里 , $h_p(k)$ (k = 0 ,... ,7)表示第 p 个重要位平面图 像 k 值颜色出现的频数 ; $D_p(i,j)$ 为第 p 个重要位 平面图像中像素点(i ,j)的颜色值.

为了使颜色直方图不随尺度变化,需要对颜色 直方图 h_p(k)进行归一化处理,以得到归一化的颜 色直方图 H_p(k):

$$H_{p}(k) = \frac{h_{p}(k)}{\sum_{k=0}^{7} h_{p}(k)}.$$
 (5)

基于重要位平面图像的加权颜色直方图不仅很 好地反映了图像的颜色信息,而且大大降低了直方 图的维数,5个位平面共40维,且不需要任何量化 处理,降低了空间与时间复杂度.

2.3 空间特征的提取

为了全面刻画数字图像的内容特征,本文采用 了一种新的空间特征表示方法,即图像空间信息熵, 该图像空间信息熵反映了具有某种颜色的像素在图 像空间中的平均分散程度^[8].

设矢量 $V = \{x_1, x_2, \dots, x_n\}$,则 V 的信息熵可 表示为

$$E(\mathbf{V}) = -\sum_{i=1}^{n} p_i \log_2(p_i), \quad (6)$$

这里, p_i 为 x_i (1 $\leq i \leq n$)的概率 $p_i = P(x_i)$. 实际上,信息熵表示了随机变量的概率密度函数.

假设 I 表示彩色图像, H 表示图像 I 的颜色直 方图, h_i 表示颜色 i 在图像 I 中所出现的概率.此时, 如果将图像的颜色直方图看成概率密度函数,则 图像的信息熵可表示为

$$E(H) = -\sum_{i=1}^{n} h_i \log_2(h_i), \quad (7)$$

其中 ,n 表示图像中的颜色数.于是 ,图像 I 的颜色 直方图特征由 n 维降到了一维.

空间信息熵越大表明具有该颜色的像素在图像 空间中越分散 ;否则 ,表明具有该颜色的像素在图像 空间的分布比较集中.

设重要位平面图像为 $D_p = \{D_p(i,j), 0 \le i < W, 0 \le j < H\}$ p = 3, 4, ..., 7),其中 W, H 分别为 图像的宽与高, p(x, y)表示像素点(x, y)的颜色 值,设 $U = \{(x, y), 0 \le x \le W, 0 \le y \le H\}$. 设位平 面图像 D_p 的颜色分量 $c \in \{R, G, B\}$ 对应的颜色数 为 M,且相应颜色值分别为 C_1 , C_2 ,..., C_M . 令 $S_q = \{(x, y)\}|((x, y)) \in U, p((x, y)) = C_q, 0 \le q < M\}$ 表 示颜色值为 C_q 的像素集合.则图像空间信息熵的 提取步骤如下: 1) 对于位平面图像 D_p 颜色分量 c 的每一种颜 色 C_q ,计算其质心 $O_q(x_c^q, y_c^q), x_c^q, y_c^q$ 分别定义为

$$x_{c}^{q} = \frac{1}{|S_{q}|} \sum_{(x,y) \in S_{q}} x ,$$

$$y_{c}^{q} = \frac{1}{|S_{q}|} \sum_{(x,y) \in S_{q}} y .$$
(8)

2) 对于 $\forall x, y \in S_q$,找出距离质心最远的像 素并计算出其与质心间的距离 r_c^q :

$$r_{c}^{q} = \max_{(x,y) \in S_{q}} \sqrt{(x - x_{c}^{q})^{2} + (y - y_{c}^{q})^{2}} .$$
(9)
3)首先以质心 $O_{q}(x_{c}^{q}, y_{c}^{q})$ 为圆心 , r_{c}^{q} 为半径构

造外接圆 ;然后在外接圆内 ,由内而外 ,以 $\frac{kr_c^q}{N}$ (1 \leqslant $k \leqslant N$,N 为给定的正整数)为半径作圆 ,从而得到 以质心为圆心的 N 个圆环.

4) 对于位平面图像 D_p 颜色分量 c 的每一种颜 色 C_q ,统计其在每个圆环内出现的概率 $h_{q,j}^c$. 这里, q 代表颜色 , $k(1 \le k \le N)$ 代表圆环.

于是,我们可以在 RGB 颜色空间内,将位平面 图像 D_b 颜色分量 c 的空间信息熵定义为

$$E_{p}(c) = -\sum_{q=1}^{M} \sum_{k=1}^{N} h_{q,k}^{c} \log_{2}(h_{q,k}^{c}). \quad (10)$$

3 相似性度量

假设示例图像为 Q ,数据库中待检索图像为 I , 则 Q ,I 之间的重要位平面图像距离定义为

$$S_{p}(Q, I) = \sum_{k=0}^{I} |H_{p}^{Q}(k) - H_{p}^{I}(k)| \times \frac{\operatorname{Min}(E_{p}^{Q}(c), E_{p}^{I}(c))}{\operatorname{Max}(E_{p}^{Q}(c), E_{p}^{I}(c))}, \quad (11)$$

其中 , $H_p^{Q}(k)$ 和 $H_p^{I}(k)$ 分别是 Q 与 I 的重要位平面 图像颜色特征 , $E_p^{Q}(c)$ 和 $E_p^{I}(c)$ 分别是 Q 与 I 的重 要位平面图像空间特征 ,k = 0 ,1 ,... ,7 表示颜色值 , p = 3 A ,... ,7 代表重要位平面.

考虑到基于重要位平面的检索需要提取各个重 要位平面图像的特征进行查询,所以图像 Q 与 I 间 总的相似度为

$$S'(Q,I) = \sum_{p=3}^{7} w_p \times S_p(Q,I),$$
 (12)

其中, w_p 为各个重要位平面的权值,p = 3,A,...,7 代表重要位平面.

当距离足够小时就认为两幅图像是相似的.通 过计算数据库中每一幅图像与示例图像之间的相似 度,然后按照相似度由大到小的顺序返回图像检索 的查询结果.

4 仿真实验结果

为验证本文算法的工作性能,以下给出了基于 内容的图像检索实验结果,并与传统颜色直方图方 法^[1]进行了对比.在实验中,系统选用了 SIMPLIcity 的测试集作为图像库(http:// wang.ist.psu.edu/docs/related),该测试集是从Corel 图像库中选取的,共包含有10个语义类,如表1所 示.其中,每个语义类包含有100幅图像,共计1000 幅图像(编号分别为0~999).为了便于计算,本文 将重要位平面权值统一设置为0.2.

Table 1 Image Semantic Class in the Test Database 表 1 测试图像库包含的图像语义类

	1
Class No.	Semantic
1	Bus
2	Horse
3	Flower
4	Dinosaur
5	Building
6	Elephant
7	People
8	Beach
9	Scenery
10	Dish

另外,为评价图像检索算法的效果,同时考虑到 检索系统返回的相似图像数目(不是所有)不适宜采 用常规的查准率(precision)和查全率(recall)评价指 标,故本文采用了 Tan 等人提出的"标准查准率 (normal precision)"和"标准查全率(normal recall)" 作为相似检索的评价淮则^[9].

图 2 给出了本文算法与传统颜色直方图方法的 检索结果(图像库内无噪声图像). 其中,显示图像 的左上角为示例图像,其余 20 幅图像是查询结果.

为了说明本文算法的鲁棒性,我们首先从测试 图像库的每类语义图像中随机抽取30幅图像(共计 300幅);然后对这300幅图像分别进行加噪处理 (包括模糊、锐化、光照、滤波等);最后将上述300幅 含噪声图像(编号为1000~1229)与原来的1000幅 图像集中在一起以构成新的测试图像库进行检索.

图 3 给出了本文算法与传统颜色直方图方法的 检索结果(图像库中有含噪声图像). 其中,显示图 像的左上角为示例图像,其余 20 幅图像是查询结果. 不难看出,本文算法不仅可以有效检索出示例图像 所对应的含噪声图像,而且能够有效检索出同类图 像所对应的含噪声图像,可见本文检索算法具有较

好的鲁棒性.

为进一步验证本文算法的有效性,我们从上述 新测试图像库(内含有噪声图像)中,每类随机抽取 5幅作为示例图像,共构成20次查询,每次查询选 取前30幅最相似的图像作为检索结果.对于每类 图像而言,计算其 5 次查询结果的标准查准率平均 值和标准查全率平均值,并将其作为该类图像的平 均标准查准率和平均标准查全率.表 2 给出了本文 方法与传统颜色直方图方法的平均标准查准率、平 均标准查全率的对比结果.

- Fig. 2 The retrieval results between the proposed method and traditional color histogram (no noise in the database). (a) The retrieval results with traditional color histogram method and (b) The retrieval results with proposed method.
- 图 2 本文算法与传统颜色直方图方法的检索结果(图像库内无噪声图像)(a)传统颜色直方图方法检索结果(b)本文方 法检索结果

750.bmp	743.bmp	153.bmp	Galanting and a second se	541.bmp	52 720.bmp	734.bmp	171 750.bmp	1024.bmp	760.bmp	1015.bmp	700.bmp	PR (4) 789.bmp	1086.bmp
1027 hmp	252 hour	702 hms	1056 hop	5 11 hmp	712 hose	700 hms	720 hms	740 hms	1052 hours	772 hose	745 hms	701 hour	724 hms
							139.0mp						
691.bmp	797.bmp	1169.bmp	824.bmp (a)	763.bmp	874.bmp	387.bmp	725.bmp	795.bmp	1071.bmp	729.bmp (b)	747.bmp	710.bmp	796.bmp

- Fig. 3 The retrieval results between the proposed method and traditional color histogram (having noise in the database). (a) The retrieval results with traditional color histogram method and (b) The retrieval results with proposed method.
- 图 3 本文算法与传统颜色直方图方法的检索结果(图像库内有噪声图像).(a)传统颜色直方图方法检索结果(b)本文方 法检索结果

Table 2	The Retrieval Performance Comparison Between the Proposed Method and Traditional	Color Histogram	Method
	表 2 两种图像检索方法的性能对照		%

Image	Average Normal Precis	sion	Average Normal Recall			
Image	The Color Histogram Method	Our Method	The Color Histogram Method	Our Method		
1	90.45	95.54	86.76	94.41		
2	53.34	53.56	43.31	42.43		
3	83.55	93.25	82.32	90.23		
4	93.47	100	90.63	100		
5	96.34	100	93.56	100		
6	66.58	77.92	54.86	60.97		
7	54.73	59.81	40.64	46.32		
8	73.34	86.79	55.68	69.44		
9	53.82	54.76	43.85	44.49		
10	85.94	90.40	69.44	73.69		

5 结 论

本文提出了一种基于位平面综合特征的彩色图 像检索算法,该算法不仅充分考虑了光照、锐化、模 糊等噪声攻击特点,而且合理利用了重要的颜色空 间分布信息.同时,实验结果也表明,该算法不仅能 够准确、快速地检索出用户所需图像,而且对光照、 锐化、模糊等噪声攻击均具有较好的鲁棒性.

参考文献

- [1] R C Veltkamp, M Tanase. Content-based image retrieval systems : A survey [R]. Utretch University, Tech Rep : UU-CS-2000-34, 2002
- [2] Ritendra Datta, Jia Li, James Z Wang. Content-based image retrieval—Approaches and trends of the new age[C]. The 7th Int 'l Workshop on Multimedia Information Retrieval, in Conjunction with ACM Int 'l Conf on Multimedia, Singapore, 2005
- [3] Xing Qiang, Yuan Baozong, Tang Xiaofang. A fast image retrieval based on weighted chromaticity histogram [J]. Journal of Computer Research and Development, 2005, 42(11):1903 -1910 (in Chinese)

(邢强,袁保宗,唐晓芳.一种基于加权色彩直方图的快速图 像检索方法[]]. 计算机研究与发展,2005,42(11):1903-1910)

- [4] J Eauqueur, N Boujemaa. Region-based image retrieval : Fast coarse segmentation and fine color description [J]. Journal of Vision Languages and Computing (JVLC), Special Issue on Vision Information System, 2004, 15(1):69-95
- [5] Y Deng, B S Manjunath, C Kenney, et al. An efficient color representation for image retrieval [J]. IEEE Trans on Image Processing, 2001, 10(1):140–147

- [6] Sun Junding, Ding Zhenguo, Zhou Lihua. Image retrieval based on image entropy and spatial distribution entropy[J]. Journal of Infrared Millimon Waves, 2005, 24(2):135-139(in Chinese) (孙君顶,丁振国,周利华.基于图像信息熵与空间分布熵的 彩色图像检索方法[J]. 红外与毫米波学报, 2005, 24(2): 135-139)
- [7] S Jeong , C S Won , R M Gray. Image retrieval using color histograms generated by Gauss mixture vector quantization [J]. Computer Vision and Image Understanding , 2004 , 9(1-3):44 -46
- [8] Suryani Lim, Guojun Lu. Spatial statistics for content based image retrieval [C]. The Int'l Conf on Information Technology: Computers and Communications, Clayton, Australia, 2003
- [9] Tan Kian-Lee, Ooi Beng Chin, Yee Chia Yeow. An evaluation of color-spatial retrieval technique for large image database[J]. Multimedia Tools and Applications, 2002, 14(1):55-78

Wang Xiangyang, born in 1965. Professor of Liaoning Normal University and senior member of China Computer Federation. His main research interests include multimedia information processing and network

information security.

王向阳,1965年生,教授,中国计算机学会高级会员,主要研 究方向为多媒体信息处理技术、网络信息安全技术.

Hu Fengli, born in 1981. M. S. candidate of Liaoning Normal University. Her main research interests include image processing and content-based image retrieval.

胡峰丽,1981年生,硕士研究生,主要研究 方向为图像处理、基于内容的图像检索.

Research Background

Content based image retrieval technology has attracted wide attention and has become a research focus in international academic community. The disadvantages of the traditional color image retrieval based color histogram are not considering the color spatial distribution and high complexity of computation. And what 's more, the retrieval results with the condition of noise image are not good as expected. So an efficient color image retrieval technique based on multi-features of bit-plane is proposed in this paper. Experimental results show that the proposed color image retrieval is more accurate and efficient in retrieving the user-interested images. Especially, it can retrieve the noise image effectively. Our work is supported by the Natural Science Foundation of Liaoning Province (20032100), the Open Foundation of State Key Laboratory for Visual and Hearing Information Processing (0503), the Science and Technology Foundation of Dalian (2006J23JH020), the Open Foundation of Key Laboratory of Jiangsu Province for Image Processing and Image Communication (ZK205014) and the Open Foundation of Computer Information Processing Key Laboratory of Jiangsu Province (KJS0602).