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Facial Expression Recognition Based on Gabor Histogram Feature and MVBoost
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Abstract In this paper the Gabor transform is combined with the hierarchical histogram to extract facial
expressional features which could hierarchically represent the change of texture in local area and thus
capture the intrinsic facial features involved in facial expression analysis. In addition Gabor transform is
relatively less sensitive to the change of lighting conditions and can thus tolerates certain rotation and
deformation of images. All these properties make this representation scheme quite robust in various
conditions and more powerful than traditional representation scheme using 1-D Gabor coefficients. With the
histogram feature used a weak classifier which uses vectors as input and multi-class real values as output is
designed to classify facial expression. This weak classifier has been embedded into the multi-class real
AdaBoost algorithm to meet the request of multi-class classification of facial expression. The resulted
method named MVBoost directly assigns a multi-class label to every input image. Thus it needs not to
train many two-class classifiers to meet the request of multi-class classification. The training process and
classification process are both simplified. Experiments conducted on common database show the efficiency
and effectiveness of the proposed technique. It is expected that this new technique will make contribution to

fast and robust facial expression recognition.
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Fig. 1 Hierarchical histogram representation based on Gabor features.
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Fig. 2 Image examples of facial expressions.
Four expression images from CMU database.
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Fig. 3 Error of training set in two-class expression classification.
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Research Background

Under the support of the National Natural Science Foundation

research on facial expression recognition has been conducted.

Facial expression is an important modality in human-computer interaction. The essence of facial expression analysis is to recognize the

facial actions caused by face expression or to perceive the human emotion through the changes of face surface. Generally there are
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three steps in automatic facial expression analysis detecting face representing facial expression and classifying facial expression. This
paper focuses on the last two steps as the face detection problem has been almost solved to some extent.

To represent facial expression the hierarchical histogram formed by the coefficients of Gabor transform on the blocks of face
images is used. Such a representation can suitably represent the change of texture in local regions on the face and thus capture the
intrinsic facial features involved in facial expression analysis. In addition Gabor transform is relatively less sensitive to the change of
lighting conditions and can tolerate certain rotation and deforming of images. All these properties make the representation scheme
quite robust.

To classify facial expression a weak classifier which uses vectors as input and uses multi-class real values as output is designed
based on the above representation. This weak classifier has been embedded into the multi-class real AdaBoost algorithm to meet the
request of multi-class classification of facial expression. This multi-class output and vector input boosting technique is called MVBoost .
It makes the training of many two-class classifiers become un-necessary for performing multi-class classification. The training process
and classification process are both simplified. Experiments conducted on two commonly used databases show the efficiency and

effectiveness of the proposed technique. It is expected that this new method will make contribution to fast and robust facial expression

recognition.
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