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Abstract Starting from the viewpoint of maximum a posteriori MAP and MRF theory a generalized
variational functional model for image restoration is established in this paper. In this model a hybrid image
regularization term and image fidelity term are included. For image fidelity term the distribution of noise is
treated as the generalized Gaussian density and thus the shape parameter is estimated by a maximum
likelihood method to automatically choose the suitable L? norm as the image fidelity criteria. Assuming that
the gradient of images is a member of e-contaminated normal distributions an image prior model in the
form of total variational integral and Dirichlet integral is proposed using the robust estimation method. Due
to the convexity of the proposed energy functional the existence of the minimizing solution of such
functional is discussed. Finally a weighted gradient descent flow is developed for image de-noising with an
iterative algorithm based on semi-point scheme. Experimental results show that the model can automatically
distinguish the statistical distribution of noise and has good performance in image restoration including
Gaussian noise and impulse noise pollution. Compared with other variation methods the performance
analysis and evaluation is made by calculating the peak of signal noise ratio PSNR and peak of edge

preservation ability PEPA .
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Fig. 1 Illustration of generalized Gaussian distribution

with different shape parameters.

3 MAP

u = arg min @ u +){Hu—uo‘|/f A
u

J¢|Vu|dx 3
0

u = arg min £ u =J§D | Vi | dx +

u

0

/IHu*uOH/’,’.

2 p
L/?
3 2
3 aecl A
c
1.2 Huber-M
Huber M-

H
Ps =1—-¢ gs +teh s g s
h s
-« €
Ing s
Huber 16 H

1—¢ g sypexp —c sg— s

s < 59
P.s =4 1—-¢ gs so<< s < 54
1—¢ g s, exp —c¢c s — s
s =5
S0 S1 S0 S
~dlng s g s
ds g s
c
= .
s s
1= 1--¢ JgsdergO g Si
c
20
Huber
g s 1
) H
1-¢
P, = exp @, s
V27 ¢
Pr S



1108

2007 44 7

2
Jk|s—? | s |> %
Pr s =7,
S” .
LZ | s [< k.
Tikhonov TV
k
k
k
Huber
16 /2 e
28 B B 3
% 2G k e
H
€ k. €
k k
17
< 42
ARE — 2G /ez 1 :
2AFR AR 1-G k
k
A k :j 22g x dx. ARE 0.925~
0
0.95 k 1.141~1.345
L? L'
9 k
1.3
L n— n;
%) ng

i= o
10
18
GGD
AL n o p L ip\n,\a”’ 0
do c * — o B
JIL n o p £+Lg,gl/p7
Ip 2 »’
i‘nl|pln‘ni|:0
i=1 o o

11

1981

¢ Digamma

o 2 p

L N
).
Z'nil)log‘ni‘
i=1
N - L A
o E ‘ n. |/’
- 1

+

o

Newton-Raphson 18

3 10°°.

Huber HB
- Jgok | Vu | dx 10
9]
Dirichlet

Sobolev H' 0
HB H' Q —R"

Huber
H' 0

19

u = argmin E u *Jgok | Vu | dx +
0
kZ

/\[|u
o)
V-t dx+/1J\u7u0|pdx

IVul >k 0

b .
uy |"dx = arg min
‘ IVal <k

>~

A>0

12

13

| Vu [Pdx +

14



1109

al,v (gpk | Vou | Vuni
It | Vo |
Ap | =y |” sign w — ug
Marquina  Osher
20
PDE
du
M|V VOV ap | Vu
| u — u, \llilsign u — ug 15
. |V
v=5__T"% g, v= v V2,
'V oul
8
u™ =" + A [ Vu" | VoV 4
%ﬁ'vu n ||un *uo\})ilsign u " 71,{0
o’
16
1 16
2
(-1,-D 0,-1 (1,-1)
O ~
€ (0-1/2) O Image Pixels
(1.0 (-1/2,0) (q[0) (1/2.0) (1,0)
€2 (1/2,0) Semi-Point Pixels
)
-1, (1,0 1,1
Fig. 2 Illustration of semi-point scheme.
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Table 1 Comparison of Restoration Results of Different Models in Gaussian Noise Case
1
SO u +L? TV u + L2 HB u + L7 Wiener Filtering Algorithm
Image Variance
PSNR PEPA PSNR PEPA PSNR PEPA PSNR PEPA
Noisy Image 55 19.59 27.56 19.59 27.56 19.59 27.56 19.59 27.56
Restoration Image 24.52 27.27 26.55 30.14 27.54 30.56 26.30 28.96
Noisy Image 20 21.51 28.84 21.51 28.84 21.51 28.84 21.51 28.84
Restoration Image 25.13 28.46 27.47 31.55 28.51 31.98 27.23 30.76
Noisy Image s 24.05 32.08 24.05 32.08 24.05 32.08 24.05 32.08
Restoration Image 26.24 29.98 28.85 33.44 29.25 34.31 28.12 33.12
4 15 1
4 SO u +L* SO u +L*
TV u +L*
Wiener TV u
‘ " HB u + L’ +L* HB u +L7 HB

u +L°
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Fig. 4 Comparison of denoising on the Gaussian noisy Lena image with variance of 15 under different variational models.

a Noisy Lena image with Gaussian noise b Using Wiener filter ¢ Using SO u + L?>model d Using

TV u + L?*model and e Using HB u + L” model.

4 15 Lena . a Lena b Wiener
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Fig. 5 Comparison of denoising on the Laplace noisy Lena image with variance of 25 under different variational models.

a Noisy Lena image with Laplace noise b Using Wiener filter ¢ Using SO « + L' model d Using
TV u +L' and e Using HB « + L’ model.
5 15 Lena . a Lena b
c SO u +L' d TV u +L' e HB u +L*

Table 2 Comparison of Restoration Results of Different Models in Laplace Noise Case

2
SO u +L! TV u +L! HB u +L* Median Filtering Algorithm 3 X3
Image Variance

PSNR PEPA PSNR PEPA PSNR PEPA PSNR PEPA

Noisy Image 10.55 9.77 10.55 9.77 10.55 9.77 10.55 9.77
Restoration Image 30 17.35 15.13 22.53 30.14 22.04 30.56 23.84 25.17
Noisy Image 11.48 10.55 11.48 28.84 11.48 28.84 11.48 28.84
Restoration Image > 20.42  18.46 25.86  31.55 25.42  31.98 25.76 26.36
Noisy Image 20 12.80 13.43 12.80 32.08 12.80 32.08 12.80 32.08

Restoration Image 22.32 22.98 28.42  33.44 27.96 34.31 27.33 27.72
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Table 3 Comparison of Restoration Results of Different Models Dealing with Different Test Images
3
Noisy Image SO u +L2 TV u +L2 HB u +L°
Test Images
PSNR PEPA PSNR PEPA PSNR PEPA PSNR PEPA
Peppers 19.35 27.21 24.31 26.94 26.21 29.42 27.51 30.32
Boat 19.31 27.19 23.98 26.16 25.89 25.86 26.64 29.78
Barbara 19.25 27.07 23.64 25.64 25.44 25.42 26.20 29.16
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Research Background

Image restoration is historically one of the oldest concerns in image processing and is still a necessary preprocessing step for many
applications. The international popular topics on image restoration are the variational and PDE-based approaches. Although there are
many energy variational functional models for dealing with the ill-posed problem of image restoration while in many cases the noise is
almost assumed to be the Gaussian distribution hence the fidelity to the data is often measured by L? norm. However the practical
applications require more specific distributions like the Laplace distribution and heavy tail distribution for example. Our work
addresses the issue of how to design the generalized variational functional model for image restoration. For the image fidelity term  the
generalized model can automatically choose the suitable L” norm for different noises and the distribution of noise is treated as the
generalized Gaussian density. While for image regularization term we use the Huber robust statistical theory to design the robust
image prior model which can deal different images with different structures. An adaptive algorithm is established which can remove
different noise while preserving salient feature such as edges and strong texture.
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