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Abstract  Selective classifiers have been proved to be a kind of algorithms that can effectively improve the
accuracy and efficiency of classification by deleting irrelevant or redundant attributes of a data set. Though
some selective classifiers have been proposed most of them deal with complete data which is due to the
complexity of dealing with incomplete data. Yet actual data sets are often incomplete and have many
redundant or irrelevant attributes because of various kinds of reason. Similar to the case of complete data

irrelevant or redundant attributes of an incomplete data set can also sharply reduce the accuracy of a
classifier established on this data set. So constructing selective classifiers for incomplete data is an important
problem. With the analysis of main methods of processing incomplete data for classification two selective
Bayes classifiers for incomplete data which are denoted as SRBC and CBSRBC respectively are presented.
While SRBC is constructed by using the robust Bayes classifiers CBSRBC is based on SRBC and chi-
squared statistics. Experiments on twelve benchmark incomplete data sets show that these two algorithms
can not only enormously reduce the number of attributes but also greatly improve the accuracy and stability
of classification as well. On the whole CBSRBC is more efficient than SRBC and its classification accuracy
is higher than that of SRBC. But some thresholds necessary to CBSRBC can be avoided by SRBC.
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Table 2 Average Accuracy of the Three Classifiers
2
3.1
Data sets RBC SRBC SRBCUC
12 Mushroom  95.96+0.02  99.68£0.04  99.68 £0.04
12 Annealing  95.96+£0.31  91.59+0.12  96.31£0.33
UCl o B. cancer 97.11+0.16 97.31%0.11 97.31%0.11
1 12 Credit 86.18%0.40  86.65+0.30 87.04%0.27
Cylinder 71.36+0.48  76.02£0.55 76.00+0.54
8124 32 Arrhythmia ~ 72.77+0.89  75.01£0.62 74.63+0.65
279 10 Vote 90.25+0.19  96.3120.00 95.85+0.00
Horse-colic  85.2040.59 88.09+0.39 88.47%0.13
Audiology ~ 67.99+0.79  76.53%0.41 74.17+0.72
Table 1 Data Sets Used in the Experiments Echocardiogram 98.36 £0.87 97.26+0.00 98.22+0.92
1 Bridges 61.6242.20  66.10£1.02  66.10%1.02
No. Names Instances  Classes  Attributes L.cancer  56.13£1.67 80.32+3.86 86.45%2.96
) Mushroom 8124 ) ” Average 81.57+0.71 85.91+0.62 86.69%0.64
2 Annealing 798 5 38
3 B. cancer 699 2 10 2 SRBC .
4 Credit 690 2 15 10 RBC
5 Cylinder 512 2 39 - SRBC 12
6 Arrhythmia 452 % 79 RBC 4.34% . L. cancer
7 Vote 435 2 16 SRBC REC
8 Horse-colic 368 2 27 24.19%.
9 Audiology 200 2 70 L. cancer
10 Echocardiogram 132 2 12 SRBC
1 Bridges 108 6 12 L. cancer . L.cancer 32
12 L. cancer 32 3 56 56
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SRBC 3 CBSRBC
4
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CBSRBC SRBC
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. CBSRBC 12
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Table 4 Performance of CBSRBC on L.Cancer with
CBSRBC SRBC RBC T. Taking Various Values
4 T. CBSRBC L.cancer
12
RBC . CBSRBC  SRBC
SRBC N Accuracy % Runtime s N Accuracy % Runtime s
CBSRBC  SRBC 5 81.29 0.53 27 84.84 2.36
3 10 82.90 1.00 30 84.84 2.41
10 15 86.45 1.73 35 84.19 4.38
20 86.45 2.42 40 84.19 5.17
Table 3 Runtime and Selected Attributes of SRBCUC and SRBC 21 87.74 2.47 45 84.19 5.84
3 SRBCUC SRBC 25 87.74 2.83 50 82.58 4.48
Selecled Allr. Rumime S 26 8774 286 56 8258 464
Data Sets Total Attr.
SRBC CBSRBC SRBC SRBCUC
Mushroom 22 3 3 110.81 41.11 4 TC 5 CBSRBC
Annealing 38 8 11 69.91 19.3 Tc
B. cancer 10 9 8 8.70  6.35 4 T. 21~26
Credit 15 10 5 15.77 6.70 87.74%
Cylinder 39 8 7 61.44 15.75 T
Arrhythmia 279 1 14 676.75 287.34 ¢ o
Vote 16 3 2 3.11 1.59 4 CBSRBC
Horse-colic 27 5 6 13.59  6.45 T. . CBSRBC
Audiology 70 12 8 269.66 35.67 SRBC
Echocardiogram 12 3 3 2.33 1.30 TC CBSRBC
Bridges 12 6 6 3.02 1.56 Tc ~ 50
L. cancer 56 5 10 4.16 2.52
. _ 4.48s T.=45 5.84s
Summation 602 83 83 1239.3 425.64
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Research Background

Selective classifiers have proved to be a kind of algorithms that can effectively improve the accuracy and efficiency of classification
by deleting irrelevant or redundant attributes of a data set. Though some efficient selective classifiers have been proposed most of
them deal with complete data. Yet actual data are often incomplete and have many redundant or irrelevant attributes because of
various kinds of reason. So constructing selective classifiers for incomplete data is an important problem. With the analysis of main
methods of processing incomplete data for classification two selective Bayes classifiers for incomplete data are presented which are
denoted as SRBC and CBSRBC respectively. While SRBC is constructed by using the robust Bayes classifiers CBSRBC is based on
SRBC and chi-squared statistics. Experiments on twelve benchmark incomplete data sets show that these two algorithms can not only
enormously reduce the number of attributes but also greatly improve the accuracy and stability of classification as well. On the
whole CBSRBC is more efficient than SRBC and its classification accuracy is higher than that of SRBC. But some thresholds
necessary to CBSRBC can be avoided by the SRBC. This work is supported by the National Natural Science Foundation of China

under grant No. 60503017 and No. 60673089.
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