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Bayesian Classifier Based on Frequent Item Sets Mining

Xu Junming Jiang Yuan and Zhou Zhihua
State Key Laboratory for Novel Software Technology Nanjing University Nanjing 210093

Abstract Naive Bayesian classifier provides a simple and effective way to classifier learning but its
assumption on attribute independence is often violated in real-world applications. To alleviate this
assumption and improve the generalization ability of Naive Bayesian classifier many works have been done
cy researchers. AODE ensembles some one-dependence Bayesian classifiers and LB selects and combines
long item sets providing new evidence to compute the class probability. Both of them achieve good
performance but higher order dependence relations may contain useful information for classification and
limiting the number of item sets used in classifier may restricts the benefit of item sets. For this
consideration a frequent item sets mining-based Bayesian classifier FISC frequent item sets classifier is
proposed. At the training stage FISC finds all the frequent item sets satisfying the minimum support
threshold min _sup and computes all the probabilities that may be used at the classification time. At the test
stage FISC constructs a classifier for each frequent item set contained in the test instance and then
classifies the instance by ensembling all these classifiers. Experiments validate the effectiveness of FISC and
show how the performance of FISC varies with different min_sup. Based on the experiment result an

experiential selection for min _sup is suggested.
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Table 1 Error Rates of Different Algorithms in form of error % stdev
+ %
Dataset NB TAN LBR AODE LB FISC
Balance 28.03+£1.06 28.83+1.16 28.35+0.77 30.24+0.88 27.94+1.11 30.61£0.73
Bew 2.85%£0.13 3.23£0.17 2.85£0.11 2.96+£0.17 2.7910.18 2.75%£0.22
Bupa 36.81%£0.00 36.81£0.00 36.811£0.00 36.81£0.00 36.81£0.00 36.81£0.00
Cleveland 16.37+0.39 17.62+0.45 16.30+0.42 16.90+0.58 17.00+£0.42 17.76 £0.81
Crx 13.54+0.24 14.54+£0.54 13.61+0.29 13.284+0.23 12.70£0.33 12.75+£0.26
Echocardiogram 23.78+1.82 24.19+1.49 24.32+2.21 22.43+1.82 21.761£0.43 23.51+1.71
German 24.78+£0.39 25.63+0.49 25.02+0.55 23.35+0.35 24.32+0.36 24.36+£0.37
Glass 25.93+£0.55 22.90+0.82 25.84+0.76 24.16+0.80 25.98+1.43 23.93+£0.65
Heart 16.44+0.43 17.59+£0.53 16.411£0.46 16.52+£0.74 17.11£0.49 17.48+0.55
Hepatitis 14.39+0.53 14.58£1.46 14.26 £0.64 13.87+0.34 11.16 £1.14 12.26 £0.61
Horse 20.19+£0.46 17.47+0.57 17.53£0.69 17.23+£0.47 17.36 £0.81 16.98 £0.47
House 9.93£0.26 5.40£0.50 5.70£0.28 5.70£0.15 5.93+£0.28 4.39%£0.20
Hungarian 15.75+0.23 15.78+0.99 15.371£0.22 15.71£0.35 15.37+0.50 15.68+0.57
Iris 5.60£0.34 6.47+£0.71 5.60+0.34 6.73£0.58 5.4710.28 6.13£0.53
Labor 7.37£1.11 5.441£1.54 6.32+£1.23 7.37+0.74 12.63+1.81 5.96£1.23
mfeat-mor 30.47+0.26 27.9910.40 28.76 £0.60 30.23+0.51 30.21+0.26 30.86+0.21
Postoperative 31.67+1.31 36.67+3.70 31.22+£1.33 31.56+1.67 36.22+1.07 31.56+1.59
Segment 8.25%£0.16 4.37+£0.22 5.47+0.18 4.28%0.12 6.131+0.20 5.32£0.10
Tic-Tac-Toe 30.37+0.34 24.09+0.60 14.42%0.84 26.00+0.58 30.08+0.32 16.93+0.54
Vehicle 37.58+0.57 26.0910.66 28.82+0.68 28.09+0.51 28.74+0.43 27.39+0.42
Wine 1.12+0.00 1.57+0.52 1.12+£0.00 1.69£0.00 0.67%0.24 1.12+£0.00
2 21 FISC 9
2 FISC NB 8
95 % t TAN 8 LBR 9
win FISC AODE 7
tie loss FISC LB. FISC
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3.2 min_sup
s . - FISC
Table 2 FISC wins/ties/loses Other Algorithms under Pairwise
. o min_sup . min_sup FISC
Two-Tailed t-tests at (.05 Significance Level
2 FISC 0.05 t
Dataset NB TAN LBR AODE LB
Balance Loss Loss Loss Loss Loss
Bew Tie Win Tie Win Tie
Bupa Tie Tie Tie Tie Tie — min_sup 13
Cleveland Loss Tie Loss Loss Loss numl)er()f[nstances
Crx Win  Win  Win Wi Tie L 0.05
Echocardiogram Tie Tie Tie Loss Loss 0.05 0.50 t
German Tie Win Win Loss Tie
Glass Win Loss Win Tie Win 21
Heart Loss Tie Loss Loss Tie P
Hepatitis Win Win Win Win Loss
t 2 4
Horse Win Tie Win Tie Tie
) . . . . FISC t
House Win Win Win Win Win
Hungarian Tie Tie Tie Tie Tie 2 FISC
Iris Loss Tie Loss Win Loss t
Labor Win Tie Tie Win Win t 2 a b
mfeat-mor Loss Loss Loss Loss Loss
Postoperative Tie Win Tie Tie Win 2 ¢
Segment Win Loss Win Loss Win
t . 2 a
Tic-Tac-Toe Win Win Loss Win Win .
Tic-Tac-Toe t 0.05 0.5
Vehicle Win Loss Win Win Win
0 0
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Fig. 2 The error rates of FISC under different ¢ values on four data sets. a Tic-Tac-Toe b Echocardiogram ¢ House
and d bupa.
2 4 FISC t Tic-Tac-Toe b Echocardiogram ¢ House and d Bupa
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Research Background

Naive Bayesian classifier is simple and effective but suffers from its assumption on attribute independence which is often violated
in real-world applications. Many works have been done to relax this assumption and improve the generalization ability of naive
Bayesian classifier. Frequent item set mining is an important field of data mining in which many algorithms have been developed.
This paper proposes a frequent item sets mining-based Bayesian classifier the FISC frequent item sets classifier . At the training
stage FISC finds all the frequent item sets by frequent item sets mining techniques and computes all the probabilities that may be
used at the classification time. At the test stage FISC constructs a classifier for each frequent item set contained in the test instance

and then classifies the instance by ensembling all these classifiers. Experiments validate the effectiveness of FISC.
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International World Wide Web Conference WWW2008  to be held on April 21 ~25 2008 in Beijing China. The conference series
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