计算机研究与发展 ›› 2014, Vol. 51 ›› Issue (10): 2255-2269.doi: 10.7544/issn1000-1239.2014.20130056
朱夏,宋爱波,东方,罗军舟
Zhu Xia, Song Aibo, Dong Fang, Luo Junzhou
摘要: 随着云计算时代的到来,应用数据量剧增,个性化推荐技术日趋重要.然而由于云计算的超大规模以及分布式处理架构等特点,将传统的推荐技术直接应用到云计算环境时会面临推荐精度低、推荐时延长以及网络开销大等问题,导致推荐性能急剧下降.针对上述问题,提出一种云计算环境下基于协同过滤的个性化推荐机制RAC.该机制首先制定分布式评分管理策略,通过定义候选邻居(candidate neighbor, CN)的概念筛选对推荐结果影响较大的项目集,并构建基于分布式存储系统的2个阶段评分索引,保证推荐机制快速准确地定位候选邻居;在此基础上提出基于候选邻居的协同过滤推荐算法(candidate neighbor-based distribited collaborative filtering algorithm, CN-DCFA),在候选邻居中搜索目标用户已评分项目的k近邻,预测目标用户的推荐集top-N.实验结果表明,在云计算环境下RAC拥有良好的推荐精度和推荐效率.
中图分类号: