• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

OpenFlow网络冗余控制报文消除机制研究

左青云, 陈鸣, 丁科, 邢长友, 张国敏, 许博

左青云, 陈鸣, 丁科, 邢长友, 张国敏, 许博. OpenFlow网络冗余控制报文消除机制研究[J]. 计算机研究与发展, 2014, 51(11): 2448-2457. DOI: 10.7544/issn1000-1239.2014.20130852
引用本文: 左青云, 陈鸣, 丁科, 邢长友, 张国敏, 许博. OpenFlow网络冗余控制报文消除机制研究[J]. 计算机研究与发展, 2014, 51(11): 2448-2457. DOI: 10.7544/issn1000-1239.2014.20130852
Zuo Qingyun, Chen Ming, Ding Ke, Xing Changyou, Zhang Guomin, Xu Bo. Eliminating Redundant Control Messages in OpenFlow Networks[J]. Journal of Computer Research and Development, 2014, 51(11): 2448-2457. DOI: 10.7544/issn1000-1239.2014.20130852
Citation: Zuo Qingyun, Chen Ming, Ding Ke, Xing Changyou, Zhang Guomin, Xu Bo. Eliminating Redundant Control Messages in OpenFlow Networks[J]. Journal of Computer Research and Development, 2014, 51(11): 2448-2457. DOI: 10.7544/issn1000-1239.2014.20130852
左青云, 陈鸣, 丁科, 邢长友, 张国敏, 许博. OpenFlow网络冗余控制报文消除机制研究[J]. 计算机研究与发展, 2014, 51(11): 2448-2457. CSTR: 32373.14.issn1000-1239.2014.20130852
引用本文: 左青云, 陈鸣, 丁科, 邢长友, 张国敏, 许博. OpenFlow网络冗余控制报文消除机制研究[J]. 计算机研究与发展, 2014, 51(11): 2448-2457. CSTR: 32373.14.issn1000-1239.2014.20130852
Zuo Qingyun, Chen Ming, Ding Ke, Xing Changyou, Zhang Guomin, Xu Bo. Eliminating Redundant Control Messages in OpenFlow Networks[J]. Journal of Computer Research and Development, 2014, 51(11): 2448-2457. CSTR: 32373.14.issn1000-1239.2014.20130852
Citation: Zuo Qingyun, Chen Ming, Ding Ke, Xing Changyou, Zhang Guomin, Xu Bo. Eliminating Redundant Control Messages in OpenFlow Networks[J]. Journal of Computer Research and Development, 2014, 51(11): 2448-2457. CSTR: 32373.14.issn1000-1239.2014.20130852

OpenFlow网络冗余控制报文消除机制研究

基金项目: 国家“九七三”重点基础研究发展计划基金项目(2012CB315806);国家自然科学基金项目(61379149,61070173,61103225)
详细信息
  • 中图分类号: TP393

Eliminating Redundant Control Messages in OpenFlow Networks

  • 摘要: OpenFlow网络数据平面将未匹配流表的数据包发送给控制器,其中的无连接突发流量将产生冗余控制报文,对网络性能造成不良影响,而目前的OpenFlow协议并未对此进行处理.研究了在控制平面和数据平面分别消除冗余控制报文的方法ERCMC(eliminating redundant control messages on the control plane)和ERCMD(eliminating redundant control messages on the data plane),分别在NOX和Open vSwitch上进行实现,并进行性能评价.实验结果表明,ERCMC方法能够消除冗余控制报文,但增加了额外的处理开销;ERCMD方法在减少冗余控制报文数量的情况下能够减小控制器和OpenFlow交换机负载.
    Abstract: The data plane of OpenFlow networks sends packets which don’t match any flow entry to the controller, and in such case connectionless burst traffic is encapsulated as control messages, until the data plane receives a response message from the controller. This process produce redundant control messages for both the control and data planes, which influences the performance of the entire network. However, current OpenFlow protocol doesn’t give definite explanation or handle this problem. In this paper, we propose two approaches of eliminating redundant control messages on the control plane (referred as ERCMC) and on the data plane (referred as ERCMD). ERCMC constructs latest packet-in message view (referred as LPMV) on the controller to mark the latest packet-in messages, so as to eliminate redundant control messages on the control plane. ERCMD adds marks directly on the data plane, so that the burst packets are directly buffered and never encapsulated as control messages. We implement these two approaches in NOX and Open vSwitch respectively, and evaluate the performance of the two approaches. The results of our experiments show that ERCMC can eliminate redundant control messages, but it will add extra processing overheads; ERCMD can not only eliminate redundant control messages, but also alleviate the load of the controller and OpenFlow switches.
  • 期刊类型引用(12)

    1. 杨兴耀,肖瑞,卢进堂. 新疆维吾尔语口音普通话短文的语音识别研究. 东北师大学报(自然科学版). 2024(04): 72-80 . 百度学术
    2. 闫凯,宋烨,刘瑜,杨莉,张浩源. 老龄化背景下居家养老系统方言识别算法应用研究——以粤语为例. 信息与电脑(理论版). 2023(02): 120-122 . 百度学术
    3. 蒋若怡,韦永壮,王慧娇. 基于深度学习的差分神经区分器求解方法. 计算机工程与设计. 2023(06): 1629-1634 . 百度学术
    4. 赵建川,杨浩铨,徐勇,吴恋,崔忠伟. 基于对比预测编码模型的多任务学习语种识别方法. 数据采集与处理. 2022(02): 288-297 . 百度学术
    5. 万苗,任杰,马苗,曹瑞. 多任务学习在中国方言分类中的应用研究. 计算机技术与发展. 2022(04): 109-115 . 百度学术
    6. 郝焕香. 基于深度学习的方言语音识别模型构建. 自动化与仪器仪表. 2022(04): 48-51 . 百度学术
    7. 王瑶,龙华,邵玉斌,杜庆治. 可变时长的短时广播语音多语种识别. 云南大学学报(自然科学版). 2022(03): 490-496 . 百度学术
    8. 付英,刘增力,汤辉. 基于CNN-BiGRU的方言语种识别. 通信技术. 2022(06): 712-719 . 百度学术
    9. 王瑶,龙华,邵玉斌,杜庆治,王延凯. 基于CRNN混合神经网络的多语种识别. 光电子·激光. 2022(06): 620-628 . 百度学术
    10. 张允耀,黄鹤鸣,张会云. 复杂噪声环境下语音识别研究. 计算机与现代化. 2021(09): 68-74 . 百度学术
    11. 辛强伟,唐云凯. 多维度数据组合的人工智能系统性能优化分析. 数字技术与应用. 2020(10): 36-38 . 百度学术
    14. 顾佳,黄明,关岳. 高速列车牵引变流器故障诊断研究. 振动.测试与诊断. 2020(05): 997-1002+1029 . 百度学术

    其他类型引用(15)

计量
  • 文章访问数:  1212
  • HTML全文浏览量:  0
  • PDF下载量:  745
  • 被引次数: 27
出版历程
  • 发布日期:  2014-10-31

目录

    /

    返回文章
    返回