• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于外观模型学习的视频目标跟踪方法综述

张焕龙, 胡士强, 杨国胜

张焕龙, 胡士强, 杨国胜. 基于外观模型学习的视频目标跟踪方法综述[J]. 计算机研究与发展, 2015, 52(1): 177-190. DOI: 10.7544/issn1000-1239.2015.20130995
引用本文: 张焕龙, 胡士强, 杨国胜. 基于外观模型学习的视频目标跟踪方法综述[J]. 计算机研究与发展, 2015, 52(1): 177-190. DOI: 10.7544/issn1000-1239.2015.20130995
Zhang Huanlong, Hu Shiqiang, Yang Guosheng. Video Object Tracking Based on Appearance Models Learning[J]. Journal of Computer Research and Development, 2015, 52(1): 177-190. DOI: 10.7544/issn1000-1239.2015.20130995
Citation: Zhang Huanlong, Hu Shiqiang, Yang Guosheng. Video Object Tracking Based on Appearance Models Learning[J]. Journal of Computer Research and Development, 2015, 52(1): 177-190. DOI: 10.7544/issn1000-1239.2015.20130995
张焕龙, 胡士强, 杨国胜. 基于外观模型学习的视频目标跟踪方法综述[J]. 计算机研究与发展, 2015, 52(1): 177-190. CSTR: 32373.14.issn1000-1239.2015.20130995
引用本文: 张焕龙, 胡士强, 杨国胜. 基于外观模型学习的视频目标跟踪方法综述[J]. 计算机研究与发展, 2015, 52(1): 177-190. CSTR: 32373.14.issn1000-1239.2015.20130995
Zhang Huanlong, Hu Shiqiang, Yang Guosheng. Video Object Tracking Based on Appearance Models Learning[J]. Journal of Computer Research and Development, 2015, 52(1): 177-190. CSTR: 32373.14.issn1000-1239.2015.20130995
Citation: Zhang Huanlong, Hu Shiqiang, Yang Guosheng. Video Object Tracking Based on Appearance Models Learning[J]. Journal of Computer Research and Development, 2015, 52(1): 177-190. CSTR: 32373.14.issn1000-1239.2015.20130995

基于外观模型学习的视频目标跟踪方法综述

基金项目: 国家自然科学基金项目(610741006,61374161)|河南省科技厅科技攻关项目(132102210513)
详细信息
  • 中图分类号: TP391

Video Object Tracking Based on Appearance Models Learning

  • 摘要: 视频跟踪是机器视觉领域中的热点研究问题,在过去的几十年内得到了广泛研究.为了获得鲁棒的跟踪效果,设计能够适应跟踪目标外观变化的外观模型成为算法研究中的一种重要内容.近年来,将机器学习理论引入外观模型设计中的思想大大推动了视频跟踪研究的发展.为了使读者能够快速了解其发展的趋势并且掌握基于外观模型学习跟踪算法研究的技术,在介绍外观模型学习跟踪算法原理和机制的基础上,重点综述了外观模型学习跟踪方法的研究进展,包括目标特征描述和3类主要目标外观建模方式及其各自研究过程中跟踪方法的对比与分析,进而总结了外观模型学习跟踪算法在理论及应用方面的研究现状,最后提出进一步研究的主要发展内容和趋势.
    Abstract: Visual tracking is an active reasch topic in the field of computer vision and has been well studied in the last decades. A key component for achieving robust tracking is the tracker’s capability of updating its internal representation of tragets to capture the varying appearance. Although numberous approaches have been proposed, many challenging problems still remain in designing an effective model of the appearance of tracked objects. In recent years, the methods of appearance model associated with statistical learning have been promoting the study for video object tracking. To help reader swiftly learn the rencent advances and trends so as to easily grasp the key problems of visual object tracking based on appearance models learning, a detailed review of the existing appearance learning models is provided. Here, the mechanism of the tracking algorithm based on appearance model learning is introduced firstly. Then the state-of-the-art feature descriptors are analyzed to show their different performance. Meanwhile, the tracking progress is categorized into three main groups, and the character of representative methods in each group are compared and analyzed in detail. Finally, the current research on the tracking methods based appearance model learning is summarized and classified, and the further application and research trend is discussed.
  • 期刊类型引用(15)

    1. 吴佳青,任大鹏. 我国人工智能芯片发展探析. 中国工程科学. 2025(01): 133-141 . 百度学术
    2. 仝杰,齐子豪,蒲天骄,宋睿,张鋆,谈元鹏,王晓飞. 电力物联网边缘智能:概念、架构、技术及应用. 中国电机工程学报. 2024(14): 5473-5496 . 百度学术
    3. 万朵,胡谋法,肖山竹,张焱. 面向边缘智能计算的异构并行计算平台综述. 计算机工程与应用. 2023(01): 15-25 . 百度学术
    4. 赵二虎,吴济文,肖思莹,晋振杰,徐勇军. 嵌入式异构智能计算系统并行多流水线设计. 电子学报. 2023(11): 3354-3364 . 百度学术
    5. 李秀敏,陈梓烁,陈雅琪. 我国人工智能芯片产业协同创新网络时空演化特征分析. 科技管理研究. 2023(23): 142-153 . 百度学术
    6. 赵一煊,刘飞阳,高晗,王建生. DNN加速器技术发展及航空计算系统应用展望. 航空计算技术. 2022(03): 130-134 . 百度学术
    7. 谢坤鹏,卢冶,靳宗明,刘义情,龚成,陈新伟,李涛. FAQ-CNN:面向量化卷积神经网络的嵌入式FPGA可扩展加速框架. 计算机研究与发展. 2022(07): 1409-1427 . 本站查看
    8. 蒲明博,李向平,张杨,郑美玲,粟雅娟,曹耀宇,曹暾,徐挺,段宣明,冯帅,孙玲. 芯片制造中的光学微纳加工技术前沿与挑战. 中国科学基金. 2022(03): 460-467 . 百度学术
    9. 高原,杨娇,赵凌,温川飙,张艺凡,罗悦. 运用人工神经网络技术结合穴位敏化理论探索慢性稳定性心绞痛疾病辅助预测模型的构建思路. 世界科学技术-中医药现代化. 2021(02): 628-634 . 百度学术
    10. 渠鹏,陈嘉杰,张悠慧,郑纬民. 实现软硬件解耦合的类脑计算硬件设计方法. 计算机研究与发展. 2021(06): 1146-1154 . 本站查看
    11. 魏东,董博晨,刘亦青. 改进神经网络的图像识别系统设计与硬件实现. 电子与信息学报. 2021(07): 1828-1833 . 百度学术
    12. 张雪怡,曹哲,刘宗宝. 智能芯片技术发展综述及医疗健康领域应用. 中国集成电路. 2021(09): 16-22+36 . 百度学术
    13. 郭经红,梁云,陈川,陈硕,陆阳,黄辉. 电力智能传感技术挑战及应用展望. 电力信息与通信技术. 2020(04): 15-24 . 百度学术
    14. 袁烨,张永,丁汉. 工业人工智能的关键技术及其在预测性维护中的应用现状. 自动化学报. 2020(10): 2013-2030 . 百度学术
    15. 赵晨,周义明. 基于FPGA的模数转换芯片AD7705/AD7706控制电路设计. 北京石油化工学院学报. 2019(04): 54-58 . 百度学术

    其他类型引用(12)

计量
  • 文章访问数:  2259
  • HTML全文浏览量:  9
  • PDF下载量:  1704
  • 被引次数: 27
出版历程
  • 发布日期:  2014-12-31

目录

    /

    返回文章
    返回