计算机研究与发展 ›› 2015, Vol. 52 ›› Issue (1): 211-220.doi: 10.7544/issn1000-1239.2015.20131016
李盼池,周红岩
Li Panchi, Zhou Hongyan
摘要: 为提高神经网络的逼近能力,提出一种基于受控Hadamard门设计的量子神经网络模型及算法.该模型输入为多维离散序列,可用矩阵描述,行数为输入节点数,列数为序列长度.模型为3层结构,隐层为量子神经元,输出层为普通神经元.量子神经元由量子旋转门和多位受控Hadamard门组成,利用多位受控Hadamard门中目标量子位的输出向输入端的反馈,实现对输入序列的整体记忆,利用受控Hadamard门中控制位和目标位之间的受控关系获得量子神经元的输出.基于量子计算理论设计了该模型的学习算法.该模型可高效地获取输入序列的特征.实验结果表明,当输入节点数和序列长度满足一定关系时,该模型明显优于普通BP神经网络.
中图分类号: