计算机研究与发展 ›› 2015, Vol. 52 ›› Issue (5): 1071-1079.doi: 10.7544/issn1000-1239.2015.20140275
邓大勇1,徐小玉1,黄厚宽2
Deng Dayong1, Xu Xiaoyu1, Huang Houkuan2
摘要: 数据流挖掘是当前数据挖掘研究的一个热点,概念漂移检测是数据流挖掘的一个重要研究方向.虽然有不少概念漂移的探测方法,但是它们都有一些共同的缺陷:没有整体上删除冗余属性以及利用外部属性去探测概念漂移(比如利用对外部数据的分类准确率)等.利用粗糙集和F-粗糙集的基本原理和基本方法,把数据流中的滑动窗口当成决策子表簇,提出了一种对数据流进行并行约简、整体删除冗余属性的方法,并运用并行约简后数据流决策子表簇中属性重要性的变化探测概念漂移现象.与传统的方法不同,新方法利用数据的内部特性对概念漂移进行探测.实验结果显示,该方法能够有效地整体删除冗余属性、探测概念漂移现象,并且基于互信息的属性重要性在概念漂移探测效果方面比基于正区域的属性重要性要好些.
中图分类号: