• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

MACT:高通量众核处理器离散访存请求批量处理机制

李文明, 叶笑春, 王达, 郑方, 李宏亮, 林晗, 范东睿, 孙凝晖

李文明, 叶笑春, 王达, 郑方, 李宏亮, 林晗, 范东睿, 孙凝晖. MACT:高通量众核处理器离散访存请求批量处理机制[J]. 计算机研究与发展, 2015, 52(6): 1254-1265. DOI: 10.7544/issn1000-1239.2015.20150154
引用本文: 李文明, 叶笑春, 王达, 郑方, 李宏亮, 林晗, 范东睿, 孙凝晖. MACT:高通量众核处理器离散访存请求批量处理机制[J]. 计算机研究与发展, 2015, 52(6): 1254-1265. DOI: 10.7544/issn1000-1239.2015.20150154
Li Wenming, Ye Xiaochun, Wang Da, Zheng Fang, Li Hongliang, Lin Han, Fan Dongrui, Sun Ninghui. MACT: Discrete Memory Access Requests Batch Processing Mechanism for High-Throughput Many-Core Processor[J]. Journal of Computer Research and Development, 2015, 52(6): 1254-1265. DOI: 10.7544/issn1000-1239.2015.20150154
Citation: Li Wenming, Ye Xiaochun, Wang Da, Zheng Fang, Li Hongliang, Lin Han, Fan Dongrui, Sun Ninghui. MACT: Discrete Memory Access Requests Batch Processing Mechanism for High-Throughput Many-Core Processor[J]. Journal of Computer Research and Development, 2015, 52(6): 1254-1265. DOI: 10.7544/issn1000-1239.2015.20150154
李文明, 叶笑春, 王达, 郑方, 李宏亮, 林晗, 范东睿, 孙凝晖. MACT:高通量众核处理器离散访存请求批量处理机制[J]. 计算机研究与发展, 2015, 52(6): 1254-1265. CSTR: 32373.14.issn1000-1239.2015.20150154
引用本文: 李文明, 叶笑春, 王达, 郑方, 李宏亮, 林晗, 范东睿, 孙凝晖. MACT:高通量众核处理器离散访存请求批量处理机制[J]. 计算机研究与发展, 2015, 52(6): 1254-1265. CSTR: 32373.14.issn1000-1239.2015.20150154
Li Wenming, Ye Xiaochun, Wang Da, Zheng Fang, Li Hongliang, Lin Han, Fan Dongrui, Sun Ninghui. MACT: Discrete Memory Access Requests Batch Processing Mechanism for High-Throughput Many-Core Processor[J]. Journal of Computer Research and Development, 2015, 52(6): 1254-1265. CSTR: 32373.14.issn1000-1239.2015.20150154
Citation: Li Wenming, Ye Xiaochun, Wang Da, Zheng Fang, Li Hongliang, Lin Han, Fan Dongrui, Sun Ninghui. MACT: Discrete Memory Access Requests Batch Processing Mechanism for High-Throughput Many-Core Processor[J]. Journal of Computer Research and Development, 2015, 52(6): 1254-1265. CSTR: 32373.14.issn1000-1239.2015.20150154

MACT:高通量众核处理器离散访存请求批量处理机制

基金项目: 国家“九七三” 重点基础研究发展计划基金项目(2011CB302501);国家“八六三”高技术研究发展计划基金项目(2012AA010901,2015AA011204);“核高基”国家科技重大专项基金项目(2013ZX0102-8001-001-001);国家自然科学基金项目(61173007,61332009,61204047)
详细信息
  • 中图分类号: TP302

MACT: Discrete Memory Access Requests Batch Processing Mechanism for High-Throughput Many-Core Processor

  • 摘要: 网络服务等新型高通量应用的迅速兴起给传统处理器设计带来了巨大的挑战.高通量众核处理器作为面向此类应用的新型处理器结构成为研究热点.然而,随着片上处理核数量的剧增,加之高通量应用的数据密集型特点,“存储墙”问题进一步加剧.通过分析高通量应用访存行为,发现此类应用存在着大量的细粒度访存,降低了访存带宽的有效利用率.基于此分析,在高通量处理器设计中通过添加访存请求收集表(memory access collection table, MACT) 硬件机制,结合消息式内存机制,用于收集离散的访存请求并进行批量处理.MACT硬件机制的实现,提高了访存带宽的有效利用率,同时也提高了执行效率;并通过时间窗口机制,确保访存请求在最晚期限之前发送出去,保证任务的实时性.实验以典型高通量应用WordCount,TeraSort,Search为基准测试程序.添加MACT硬件机制后,访存数量减少约49%,访存带宽提高约24%,平均执行速度提高约89%.
    Abstract: The rapid development of new high-throughput applications, such as Web services, brings huge challenges to traditional processors which target at high-performance applications. High-throughput many-core processors, as new processors, become hotspot for high-throughput applications. However, with the dramatic increase in the number of on chip cores, combined with the property of memory intensive of high throughput applications, the “memory wall” problems have intensified. After analyzing the memory access behavior of high throughput applications, it is found out that there are a large proportion of fine-grained granularity memory accesses which degrade the efficiency of bandwidth utilization and cause unnecessary energy consumption. Based on this observation, in high-throughput many-core processors design, memory access collection table (MACT) is implemented to collect discrete memory access requests and to handle them in batch under deadline constraint. Using MACT hardware mechanism, both bandwidth utilization and execution efficiency have been improved. QoS is also guaranteed by employing time-window mechanism, which insures that all the requests can be sent before the deadline. WordCount, TeraSort and Search are typical high-throughput application benchmarks which are used in experiments. The experimental results show that MACT reduces the number of memory accesses requests by 49% and improves bandwidth efficiency by 24%, and the average execution speed is improved by 89%.
  • 期刊类型引用(12)

    1. 杨兴耀,肖瑞,卢进堂. 新疆维吾尔语口音普通话短文的语音识别研究. 东北师大学报(自然科学版). 2024(04): 72-80 . 百度学术
    2. 闫凯,宋烨,刘瑜,杨莉,张浩源. 老龄化背景下居家养老系统方言识别算法应用研究——以粤语为例. 信息与电脑(理论版). 2023(02): 120-122 . 百度学术
    3. 蒋若怡,韦永壮,王慧娇. 基于深度学习的差分神经区分器求解方法. 计算机工程与设计. 2023(06): 1629-1634 . 百度学术
    4. 赵建川,杨浩铨,徐勇,吴恋,崔忠伟. 基于对比预测编码模型的多任务学习语种识别方法. 数据采集与处理. 2022(02): 288-297 . 百度学术
    5. 万苗,任杰,马苗,曹瑞. 多任务学习在中国方言分类中的应用研究. 计算机技术与发展. 2022(04): 109-115 . 百度学术
    6. 郝焕香. 基于深度学习的方言语音识别模型构建. 自动化与仪器仪表. 2022(04): 48-51 . 百度学术
    7. 王瑶,龙华,邵玉斌,杜庆治. 可变时长的短时广播语音多语种识别. 云南大学学报(自然科学版). 2022(03): 490-496 . 百度学术
    8. 付英,刘增力,汤辉. 基于CNN-BiGRU的方言语种识别. 通信技术. 2022(06): 712-719 . 百度学术
    9. 王瑶,龙华,邵玉斌,杜庆治,王延凯. 基于CRNN混合神经网络的多语种识别. 光电子·激光. 2022(06): 620-628 . 百度学术
    10. 张允耀,黄鹤鸣,张会云. 复杂噪声环境下语音识别研究. 计算机与现代化. 2021(09): 68-74 . 百度学术
    11. 辛强伟,唐云凯. 多维度数据组合的人工智能系统性能优化分析. 数字技术与应用. 2020(10): 36-38 . 百度学术
    14. 顾佳,黄明,关岳. 高速列车牵引变流器故障诊断研究. 振动.测试与诊断. 2020(05): 997-1002+1029 . 百度学术

    其他类型引用(15)

计量
  • 文章访问数:  1342
  • HTML全文浏览量:  0
  • PDF下载量:  816
  • 被引次数: 27
出版历程
  • 发布日期:  2015-05-31

目录

    /

    返回文章
    返回