• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于通勤时间距离的流形聚类与可视化

邵超, 张啸剑

邵超, 张啸剑. 基于通勤时间距离的流形聚类与可视化[J]. 计算机研究与发展, 2015, 52(8): 1757-1767. DOI: 10.7544/issn1000-1239.2015.20150247
引用本文: 邵超, 张啸剑. 基于通勤时间距离的流形聚类与可视化[J]. 计算机研究与发展, 2015, 52(8): 1757-1767. DOI: 10.7544/issn1000-1239.2015.20150247
Shao Chao, Zhang Xiaojian. Manifold Clustering and Visualization with Commute Time Distance[J]. Journal of Computer Research and Development, 2015, 52(8): 1757-1767. DOI: 10.7544/issn1000-1239.2015.20150247
Citation: Shao Chao, Zhang Xiaojian. Manifold Clustering and Visualization with Commute Time Distance[J]. Journal of Computer Research and Development, 2015, 52(8): 1757-1767. DOI: 10.7544/issn1000-1239.2015.20150247
邵超, 张啸剑. 基于通勤时间距离的流形聚类与可视化[J]. 计算机研究与发展, 2015, 52(8): 1757-1767. CSTR: 32373.14.issn1000-1239.2015.20150247
引用本文: 邵超, 张啸剑. 基于通勤时间距离的流形聚类与可视化[J]. 计算机研究与发展, 2015, 52(8): 1757-1767. CSTR: 32373.14.issn1000-1239.2015.20150247
Shao Chao, Zhang Xiaojian. Manifold Clustering and Visualization with Commute Time Distance[J]. Journal of Computer Research and Development, 2015, 52(8): 1757-1767. CSTR: 32373.14.issn1000-1239.2015.20150247
Citation: Shao Chao, Zhang Xiaojian. Manifold Clustering and Visualization with Commute Time Distance[J]. Journal of Computer Research and Development, 2015, 52(8): 1757-1767. CSTR: 32373.14.issn1000-1239.2015.20150247

基于通勤时间距离的流形聚类与可视化

基金项目: 国家自然科学基金项目(61202285)
详细信息
  • 中图分类号: TP181

Manifold Clustering and Visualization with Commute Time Distance

  • 摘要: 现有流形学习算法能比较好地学习和可视化高维数据的低维非线性流形结构,但对难以高效选取的邻域大小参数还比较敏感,且要求数据良好采样于单一流形.为了降低流形学习算法对邻域大小参数的敏感程度,并实现对多流形数据的良好聚类与可视化,提出了1种新的基于通勤时间距离的流形学习算法——CTD-ISOMAP(commute time distance isometric mapping).和欧氏距离相比,通勤时间距离以概率的形式综合考虑了邻域图上2点间的所有连接路径,不但更加鲁棒,而且还能表达数据的内在几何结构.因此,CTD-ISOMAP算法采用通勤时间距离能比较好地识别并删除邻域图中可能存在的“短路”边以及不同流形之间的连接边,从而能在更大的邻域大小参数范围内实现对流形数据的良好可视化,并提高对多流形数据的聚类效果.最后的实验结果证实了该算法的有效性.
    Abstract: The existing manifold learning algorithms can effectively learn and visualize the low-dimensional nonlinear manifold structure of high-dimensional data. However, most efforts to date select the neighborhood size in sensitivity and difficulty, and require sampling the data from a single manifold. To reduce the sensitivity of manifold learning algorithms to the neighborhood size, and address the effective visualization and clustering of multi-manifold data, this paper employs the commute time distance to propose a novel manifold learning algorithm, called CTD-ISOMAP (commute time distance isometric mapping). Compared with Euclidean distance, commute time distance probabilistically synthesizes all the paths connecting any two points in the neighborhood graph. Consequently, it takes into account the intrinsic nonlinear geometric structure for the given data, while still providing the robust results, and then is suitable to identify the shortcut edges and the inter-manifold edges possibly existed in the neighborhood graph. CTD-ISOMAP with the commute time distance, therefore, effectively eliminates the shortcut edges in the neighborhood graph, so that each output achieves the low-dimensional nonlinear manifold structure in the much wider range of the neighborhood size, and eliminates the inter-manifold edges in the neighborhood graph to boost the clustering on multi-manifold data obtained by spectral clustering. Finally, our experimental study verifies the effectiveness of CTD-ISOMAP.
  • 期刊类型引用(9)

    1. 黄翔东,陈红红,甘霖. 基于频率-时间扩张密集网络的语音增强方法. 计算机研究与发展. 2023(07): 1628-1638 . 本站查看
    2. 许春冬,徐琅,周滨. 结合优化U-Net和残差神经网络的单通道语音增强算法. 现代电子技术. 2022(09): 35-40 . 百度学术
    3. 葛宛营,张天骐,范聪聪,张天. 噪声情况下采用稀疏非负矩阵分解与深度吸引子网络的人声分离算法. 声学学报. 2021(01): 55-66 . 百度学术
    4. GE Wanying,ZHANG Tianqi,FAN Congcong,ZHANG Tian. Monaural noisy speech separation combining sparse non-negative matrix factorization and deep attractor network. Chinese Journal of Acoustics. 2021(02): 266-280 . 必应学术
    5. 王静红,梁丽娜,李昊康,周易. 基于注意力网络特征的社区发现算法. 山东大学学报(理学版). 2021(09): 1-12+20 . 百度学术
    6. 张天骐,柏浩钧,叶绍鹏,刘鉴兴. 基于门控残差卷积编解码网络的单通道语音增强方法. 信号处理. 2021(10): 1986-1995 . 百度学术
    7. 曹丽静. 语音增强技术研究综述. 河北省科学院学报. 2020(02): 30-36 . 百度学术
    8. 张天骐,张晓艳,周琳,胡延平. 基于稀疏性的相位谱补偿语音增强算法. 信号处理. 2020(11): 1867-1876 . 百度学术
    9. 时文华,张雄伟,邹霞,孙蒙. 利用深度全卷积编解码网络的单通道语音增强. 信号处理. 2019(04): 631-640 . 百度学术

    其他类型引用(8)

计量
  • 文章访问数:  1375
  • HTML全文浏览量:  0
  • PDF下载量:  940
  • 被引次数: 17
出版历程
  • 发布日期:  2015-07-31

目录

    /

    返回文章
    返回