A Community Detecting Method Based on the Node Intimacy and Degree in Social Network
-
摘要: 社会网络是现实社会在网络空间的延伸,研究社会网络的结构特征对于发现网络结构、预测网络行为、保障网络安全有着重要的意义.社团结构是社会网络最重要的一种结构特征.近年来,研究人员提出了大量的社团检测算法,但大多集中在无权网络,不能处理网络中越来越复杂的连接关系.为了衡量有向加权网络中节点之间的关联强度,提出了一种新的节点亲密度定义,在此基础上设计了一种基于节点亲密度和度的社团结构检测方法(community detecting method based on node intimacy and degree, CDID),并在真实的社会网络数据集上进行了实验验证.与传统的社团检测方法相比,CDID方法能够获得更加准确的社团划分结果,并为无向无权、有向无权、无向加权、有向加权网络的社团划分提供了一种统一的解决方法.Abstract: Social network is an extension of realistic society in cyberspace. The research on structural characteristics of social network has an important significance on network architecture discovery, network behavior forecast and network security protection. The community structure is one of the basic and important structural characteristics of social network. In recent years, a lot of algorithms for community detecting in social network have been proposed. But they always focuse on unweighted networks, and can’t handle the more and more complex connect relationships between nodes. In order to measure the connection strength in directed and weighted networks, a new definition of node intimacy is proposed. Then, a community detecting method based on node intimacy and degree (CDID) is designed. This method is verified through a series of experiments on synthetic datasets and real-world social network datasets. Compared with other state-of-the-art algorithms, this methed can obtain more accurate community division results under a reasonable run time. And it also provides a unification community detecting method for the four different type networks, such as undirected-unweighted, directed-unweighted, undirected-weighted and directed-weighted networks.
-
Keywords:
- node intimacy /
- node degree /
- weighted networks /
- modularity /
- community detecting
-
-
期刊类型引用(7)
1. 杨秀璋,武帅,宋籍文,廖文婧,任天舒,刘建义. 基于LDA和关系图谱的数据治理文献主题演化研究. 信息技术与信息化. 2022(08): 6-12 . 百度学术
2. 黄飞杰,张卫东,侯石鹏,宋红文. 基于GSP算法的卷烟消费者研究. 信息与电脑(理论版). 2022(16): 58-60 . 百度学术
3. 张瑾,朱桂祥,王宇琛,郑烁佳,陈镜潞. 基于异质图表达学习的跨境电商推荐模型. 电子与信息学报. 2022(11): 4008-4017 . 百度学术
4. 冯晨娇,宋鹏,王智强,梁吉业. 一种基于3因素概率图模型的长尾推荐方法. 计算机研究与发展. 2021(09): 1975-1986 . 本站查看
5. 牛俊洁,崔忠伟,赵晨洁,王永金,吴恋. 个性化旅游推荐技术研究及发展综述. 物联网技术. 2020(03): 86-88+91 . 百度学术
6. 史亚奇. 基于人性化特征的旅游地智能推荐系统. 现代电子技术. 2020(11): 183-186 . 百度学术
7. 张如花,屈正庚. 基于AHP的旅游网站评价体系研究. 甘肃科学学报. 2019(05): 32-36 . 百度学术
其他类型引用(11)
计量
- 文章访问数: 1820
- HTML全文浏览量: 0
- PDF下载量: 2040
- 被引次数: 18