计算机研究与发展 ›› 2016, Vol. 53 ›› Issue (7): 1544-1560.doi: 10.7544/issn1000-1239.2016.20148251
李岩1,王挺1,刘万伟1,张晓艳2
Li Yan1, Wang Ting1, Liu Wanwei1, Zhang Xiaoyan2
摘要: 因果关系的研究在于揭示自然规律的和人类社会发展本质及其规律,对人类长久以来的生产生活和科学研究有着非常重要的作用.目前,因果关系的研究受到前所未有的广泛关注,但仍存在诸多困难和挑战.致力于建立一个因果激励抑制模型以抽象地表示和解释因果的作用机制,并在此基础上提出用于目标节点的局部因果关系网络的自动发现方法框架ICIC和算法ICIC_Target.该方法不预先设定因果结构(如设定为无圈、隐含结构),并根据对因果关系本质的认识,利用初始变量(exogenous variables)和初始团树(IClique)的概念,在判定边和方向之前对变量进行粗略地排序,从而提高了因果关系网络发现的性能.在4个不同类型的数据集上实现了与多种经典方法,如HITON,IC,PC,PCMB等的对比实验,实验结果表明ICIC_Target方法适用范围广,有较好的鲁棒性,同时,从理论上分析证实了ICIC_Target方法具有较好的稳定性和较低的复杂度.
中图分类号: