计算机研究与发展 ›› 2016, Vol. 53 ›› Issue (12): 2867-2881.doi: 10.7544/issn1000-1239.2016.20150078
任丽芳1,2,王文剑1,许行1
Ren Lifang1,2, Wang Wenjian1, Xu Hang1
摘要: 云计算服务组合是从众多分布在不同云计算平台上的远程服务中选择合适的组件服务来构建可伸缩的松耦合的增值应用.传统的服务组合方法通常将服务选择与服务组合分阶段进行,由于云计算环境的动态性和服务自身演化的随机性,不能保证选择阶段性能最优的服务在组合服务执行阶段依然是最优的.考虑到云计算环境服务组合的动态性和随机性,建立基于部分可观测Markov决策过程(partially observable Markov decision process, POMDP)的服务组合模型SC_POMDP (service composition based on POMDP),并设计用于模型求解的Q学习算法.SC_POMDP模型在组合服务运行中动态地进行服务质量(quality of service, QoS)最优的组件服务选择,且认为组合服务运行的环境状态是不确定的,同时SC_POMDP考虑了组件服务间的兼容性,可保证服务组合对实际情境的适应性.仿真实验表明,所提出的方法能成功地解决不同规模的服务组合问题,在出现不同比率的服务失效时,SC_POMDP仍然能动态地选择可用的最优组件服务,保证服务组合能成功地执行.与已有方法相比,SC_POMDP方法所选的服务有更优的响应时间和吞吐量,表明SC_POMDP可有效地提高服务组合的自适应性.
中图分类号: