Abstract:
Accompanied by the arrival of the era of big data, data center has been becoming an infrastructure in human life.Many-core processor provides a highly parallel capability to solve applications in data center such as sorting and searching efficiently. For the purpose to utilize the parallelism of many-core processor, routing algorithm in interconnection network turns into one of the most important issues in many-core system. Mesh and ring are the most employed topological structures in many-core processor for their features of easy implementation and high scalability. Depending on the scope of congestion information, routing algorithms in mesh and ring can be divided into oblivious routing, local adaptive routing, regional adaptive routing and global adaptive routing. The oblivious routing algorithm applied in the mesh architecture affects the load-balance of the network which is reflected in reducing through-put and high packet latency. Current local adaptive routing and regional adaptive routing both suffer from short-sightedness and are not suitable for large scale mesh structure. And prior global adaptive routings are limited by the slow computation of global route. We propose a novel global hierarchical adaptive routing mechanism, which is comprised of a global congestion information propagation network Roof-Mesh and a global hierarchical adaptive routing algorithm GHARA. Roof-Mesh provides a platform to share global congestion information in a hierarchical way among all nodes on the network. Depending on the information supplied by Roof-Mesh, GHARA reduces the procedure of routing by hierarchically computing from large region perspective to neighbor nodes. The result of experiment shows that GHARA performs better than other regional and global adaptive routings.