计算机研究与发展 ›› 2016, Vol. 53 ›› Issue (9): 1953-1963.doi: 10.7544/issn1000-1239.2016.20150157
李勇1,王冉1,冯丹2,施展2
Li Yong1, Wang Ran1, Feng Dan2, Shi Zhan2
摘要: 当前数据中心广泛采用虚拟化、混合存储等技术以满足不断增长的存储容量和性能需求,这使得存储系统异构性变得越来越普遍.异构存储系统的一个典型问题是由于设备负载和服务能力不匹配,使得存储系统中广泛使用的条带等并行访问技术难以充分发挥作用,导致性能降低.针对这一问题,提出了一种基于负载特征识别和访问性能预测的缓存分配算法(access-pattern aware and performance prediction-based cache allocation algorithm, Caper),通过缓存分配来调节不同存储设备之间的I/O负载分布,使得存储设备上的负载和其本身服务能力相匹配,从而减轻甚至消除异构存储系统中的性能瓶颈.实验结果表明,Caper算法能够有效提高异构存储系统的性能,在混合负载访问下,比Chakraborty算法平均提高了约26.1%,比Forney算法平均提高了约28.1%,比Clock算法平均提高了约30.3%,比添加预取功能的Chakraborty算法和Forney算法分别平均提高了约7.7%和17.4%.
中图分类号: