计算机研究与发展 ›› 2016, Vol. 53 ›› Issue (6): 1410-1421.doi: 10.7544/issn1000-1239.2016.20150806
• 人工智能 • 上一篇
魏文红1,王甲海2,陶铭1,袁华强1
Wei Wenhong1, Wang Jiahai2, Tao Ming1, Yuan Huaqiang1
摘要: 差分进化算法是一种简单有效的进化算法,基于泛化反向学习的机制在进化算法中经常可以引导种群的进化.针对多目标的约束优化问题,提出了一种基于泛化反向学习的多目标约束差分进化算法.该算法采用基于泛化反向学习的机制(generalized opposition-based learning, GOBL)产生变换种群,然后在种群初始化和代跳跃阶段,利用非支配排序、拥挤距离和约束处理技术从原始种群和其变换种群中选择更优的种群个体作为新的种群继续迭代进化;该算法通过采用基于泛化反向学习的机制,可以引导种群个体慢慢向最优的Pareto前沿逼近,以求得最优解集.最后采用多目标Benchmark问题对该算法进行了实验评估,实验结果表明:与NSGA-Ⅱ,MOEA/D及其他的多目标进化算法相比,提出的算法具有更好的收敛性,并且产生的解能够逼近最优的Pareto前沿.
中图分类号: