• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于正负样例的蛋白质功能预测

傅广垣, 余国先, 王峻, 郭茂祖

傅广垣, 余国先, 王峻, 郭茂祖. 基于正负样例的蛋白质功能预测[J]. 计算机研究与发展, 2016, 53(8): 1753-1765. DOI: 10.7544/issn1000-1239.2016.20160196
引用本文: 傅广垣, 余国先, 王峻, 郭茂祖. 基于正负样例的蛋白质功能预测[J]. 计算机研究与发展, 2016, 53(8): 1753-1765. DOI: 10.7544/issn1000-1239.2016.20160196
Fu Guangyuan, Yu Guoxian, Wang Jun, Guo Maozu. Protein Function Prediction Using Positive and Negative Examples[J]. Journal of Computer Research and Development, 2016, 53(8): 1753-1765. DOI: 10.7544/issn1000-1239.2016.20160196
Citation: Fu Guangyuan, Yu Guoxian, Wang Jun, Guo Maozu. Protein Function Prediction Using Positive and Negative Examples[J]. Journal of Computer Research and Development, 2016, 53(8): 1753-1765. DOI: 10.7544/issn1000-1239.2016.20160196
傅广垣, 余国先, 王峻, 郭茂祖. 基于正负样例的蛋白质功能预测[J]. 计算机研究与发展, 2016, 53(8): 1753-1765. CSTR: 32373.14.issn1000-1239.2016.20160196
引用本文: 傅广垣, 余国先, 王峻, 郭茂祖. 基于正负样例的蛋白质功能预测[J]. 计算机研究与发展, 2016, 53(8): 1753-1765. CSTR: 32373.14.issn1000-1239.2016.20160196
Fu Guangyuan, Yu Guoxian, Wang Jun, Guo Maozu. Protein Function Prediction Using Positive and Negative Examples[J]. Journal of Computer Research and Development, 2016, 53(8): 1753-1765. CSTR: 32373.14.issn1000-1239.2016.20160196
Citation: Fu Guangyuan, Yu Guoxian, Wang Jun, Guo Maozu. Protein Function Prediction Using Positive and Negative Examples[J]. Journal of Computer Research and Development, 2016, 53(8): 1753-1765. CSTR: 32373.14.issn1000-1239.2016.20160196

基于正负样例的蛋白质功能预测

基金项目: 国家自然科学基金项目(61402378,61571163,61532014);重庆市基础与前沿研究项目(cstc2014jcyjA40031,cstc2016jcyjA0351);重庆市研究生科研创新项目(CYS16070);中央高校基本科研业务费基金项目(2362015XK07,XDJK2016B009,XDJK2016D021)
详细信息
  • 中图分类号: TP391

Protein Function Prediction Using Positive and Negative Examples

  • 摘要: 蛋白质功能预测是后基因组时代生物信息学的核心问题之一.蛋白质功能标记数据库通常仅提供蛋白质具有某个功能(正样例)的信息,极少提供蛋白质不具有某个功能(负样例)的信息.当前的蛋白质功能预测方法通常仅利用蛋白质正样例,极少关注量少但富含信息的蛋白质负样例.为此,提出一种基于正负样例的蛋白质功能预测方法(protein function prediction using positive and negative examples, ProPN).ProPN首先通过构造一个有向符号混合图描述已知的蛋白质与功能标记的正负关联信息、蛋白质之间的互作信息和功能标记间的关联关系,再通过符号混合图上的标签传播算法预测蛋白质功能.在酵母菌、老鼠和人类蛋白质数据集上的实验表明,ProPN不仅在预测已知部分功能标记蛋白质的负样例任务上优于现有算法,在预测功能标记完全未知蛋白质的功能任务上也获得了较其他相关方法更高的精度.
    Abstract: Predicting protein function is one of the key challenges in the post genome era. Functional annotation databases of proteins mainly provide the knowledge of positive examples that proteins carrying out a given function, and rarely record the knowledge of negative examples that proteins not carrying out a given function. Current computational models almost only focus on utilizing the positive examples for function prediction and seldom pay attention to these scarce but informative negative examples. It is well recognized that both positive and negative examples should be used to achieve a discriminative predictor. Motivated by this recognition, in this paper, we propose a protein function prediction approach using positive and negative examples (ProPN) to bridge this gap. ProPN first utilizes a direct signed hybrid graph to describe the positive examples, negative examples, interactions between proteins and correlations between functions; and then it employs label propagation on the graph to predict protein function. The experimental results on several public available proteomic datasets demonstrate that ProPN not only makes better performance in predicting negative examples of proteins whose functional annotations are partially known than state-of-the-art algorithms, but also performs better than other related approaches in predicting functions of proteins whose functional annotations are completely unknown.
  • 期刊类型引用(9)

    1. 黄翔东,陈红红,甘霖. 基于频率-时间扩张密集网络的语音增强方法. 计算机研究与发展. 2023(07): 1628-1638 . 本站查看
    2. 许春冬,徐琅,周滨. 结合优化U-Net和残差神经网络的单通道语音增强算法. 现代电子技术. 2022(09): 35-40 . 百度学术
    3. 葛宛营,张天骐,范聪聪,张天. 噪声情况下采用稀疏非负矩阵分解与深度吸引子网络的人声分离算法. 声学学报. 2021(01): 55-66 . 百度学术
    4. GE Wanying,ZHANG Tianqi,FAN Congcong,ZHANG Tian. Monaural noisy speech separation combining sparse non-negative matrix factorization and deep attractor network. Chinese Journal of Acoustics. 2021(02): 266-280 . 必应学术
    5. 王静红,梁丽娜,李昊康,周易. 基于注意力网络特征的社区发现算法. 山东大学学报(理学版). 2021(09): 1-12+20 . 百度学术
    6. 张天骐,柏浩钧,叶绍鹏,刘鉴兴. 基于门控残差卷积编解码网络的单通道语音增强方法. 信号处理. 2021(10): 1986-1995 . 百度学术
    7. 曹丽静. 语音增强技术研究综述. 河北省科学院学报. 2020(02): 30-36 . 百度学术
    8. 张天骐,张晓艳,周琳,胡延平. 基于稀疏性的相位谱补偿语音增强算法. 信号处理. 2020(11): 1867-1876 . 百度学术
    9. 时文华,张雄伟,邹霞,孙蒙. 利用深度全卷积编解码网络的单通道语音增强. 信号处理. 2019(04): 631-640 . 百度学术

    其他类型引用(8)

计量
  • 文章访问数:  1613
  • HTML全文浏览量:  5
  • PDF下载量:  656
  • 被引次数: 17
出版历程
  • 发布日期:  2016-07-31

目录

    /

    返回文章
    返回